!26664 Add support float64 as input type for ReduceProd GPU op.

Merge pull request !26664 from hezhenhao1/add_prod
This commit is contained in:
i-robot 2021-11-23 15:06:05 +00:00 committed by Gitee
commit 3fc995a6ae
3 changed files with 29 additions and 136 deletions

View File

@ -52,5 +52,7 @@ MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeFloat16).
ArrayReduceGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArrayReduceGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(ReduceProd, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
ArrayReduceGpuKernel, double)
} // namespace kernel
} // namespace mindspore

View File

@ -972,7 +972,7 @@ class ReduceProd(_Reduce):
ValueError: If `axis` is not one of the following: int, tuple or list.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))

View File

@ -19,152 +19,43 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
x0 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis0 = 3
keep_dims0 = True
x1 = np.random.rand(2, 3, 4, 4).astype(np.float16)
axis1 = 3
keep_dims1 = False
x2 = np.random.rand(2, 3, 1, 4).astype(np.int8)
axis2 = 2
keep_dims2 = True
x3 = np.random.rand(2, 3, 1, 4).astype(np.float32)
axis3 = 2
keep_dims3 = False
x4 = np.random.rand(2, 3, 4, 4).astype(np.float16)
axis4 = ()
np_axis4 = None
keep_dims4 = True
x5 = np.random.rand(2, 3, 4, 4).astype(np.int8)
axis5 = ()
np_axis5 = None
keep_dims5 = False
x6 = np.random.rand(2, 3, 4, 4).astype(np.float32)
axis6 = -2
keep_dims6 = False
x7 = np.random.rand(2, 3, 4, 4).astype(np.float16)
axis7 = (-2, -1)
keep_dims7 = True
x8 = np.random.rand(1, 1, 1, 1).astype(np.float32)
axis8 = ()
np_axis8 = None
keep_dims8 = True
class ReduceProd(nn.Cell):
def __init__(self):
def __init__(self, keep_dims):
super(ReduceProd, self).__init__()
self.reduce_prod = P.ReduceProd(keep_dims=keep_dims)
self.x0 = Tensor(x0)
self.axis0 = axis0
self.keep_dims0 = keep_dims0
self.x1 = Tensor(x1)
self.axis1 = axis1
self.keep_dims1 = keep_dims1
self.x2 = Tensor(x2)
self.axis2 = axis2
self.keep_dims2 = keep_dims2
self.x3 = Tensor(x3)
self.axis3 = axis3
self.keep_dims3 = keep_dims3
self.x4 = Tensor(x4)
self.axis4 = axis4
self.keep_dims4 = keep_dims4
self.x5 = Tensor(x5)
self.axis5 = axis5
self.keep_dims5 = keep_dims5
self.x6 = Tensor(x6)
self.axis6 = axis6
self.keep_dims6 = keep_dims6
self.x7 = Tensor(x7)
self.axis7 = axis7
self.keep_dims7 = keep_dims7
self.x8 = Tensor(x8)
self.axis8 = axis8
self.keep_dims8 = keep_dims8
@ms_function
def construct(self):
return (P.ReduceProd(self.keep_dims0)(self.x0, self.axis0),
P.ReduceProd(self.keep_dims1)(self.x1, self.axis1),
P.ReduceProd(self.keep_dims2)(self.x2, self.axis2),
P.ReduceProd(self.keep_dims3)(self.x3, self.axis3),
P.ReduceProd(self.keep_dims4)(self.x4, self.axis4),
P.ReduceProd(self.keep_dims5)(self.x5, self.axis5),
P.ReduceProd(self.keep_dims6)(self.x6, self.axis6),
P.ReduceProd(self.keep_dims7)(self.x7, self.axis7),
P.ReduceProd(self.keep_dims8)(self.x8, self.axis8))
def construct(self, x, axis):
return self.reduce_prod(x, axis)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_reduce_prod():
@pytest.mark.parametrize('decimal, dtype',
[(1e-10, np.int8), (1e-3, np.float16), (1e-5, np.float32), (1e-8, np.float64)])
@pytest.mark.parametrize('shape, axis, keep_dims',
[((2, 3, 4, 4), 3, True), ((2, 3, 4, 4), 3, False), ((2, 3, 1, 4), 2, True),
((2, 3, 1, 4), 2, False), ((2, 3, 4, 4), None, True), ((2, 3, 4, 4), None, False),
((2, 3, 4, 4), -2, False), ((2, 3, 4, 4), (-2, -1), False), ((1, 1, 1, 1), None, True)])
def test_reduce_prod(decimal, dtype, shape, axis, keep_dims):
"""
Feature: ALL To ALL
Description: test cases for ReduceProd
Expectation: the result match to numpy
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
reduce_max = ReduceProd()
output = reduce_max()
x = np.random.rand(*shape).astype(dtype)
tensor_x = Tensor(x)
expect1 = np.prod(x1, axis=axis1, keepdims=keep_dims1)
diff1 = abs(output[1].asnumpy() - expect1)
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output[1].shape == expect1.shape
reduce_prod = ReduceProd(keep_dims)
ms_axis = axis if axis is not None else ()
output = reduce_prod(tensor_x, ms_axis)
expect2 = np.prod(x2, axis=axis2, keepdims=keep_dims2)
diff2 = abs(output[2].asnumpy() - expect2)
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output[2].shape == expect2.shape
expect3 = np.prod(x3, axis=axis3, keepdims=keep_dims3)
diff3 = abs(output[3].asnumpy() - expect3)
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert output[3].shape == expect3.shape
expect4 = np.prod(x4, axis=np_axis4, keepdims=keep_dims4)
diff4 = abs(output[4].asnumpy() - expect4)
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert output[4].shape == expect4.shape
expect5 = np.prod(x5, axis=np_axis5, keepdims=keep_dims5)
diff5 = abs(output[5].asnumpy() - expect5)
error5 = np.ones(shape=expect5.shape) * 1.0e-5
assert np.all(diff5 < error5)
assert output[5].shape == expect5.shape
expect6 = np.prod(x6, axis=axis6, keepdims=keep_dims6)
diff6 = abs(output[6].asnumpy() - expect6)
error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6)
assert output[6].shape == expect6.shape
expect7 = np.prod(x7, axis=axis7, keepdims=keep_dims7)
diff7 = abs(output[7].asnumpy() - expect7)
error7 = np.ones(shape=expect7.shape) * 1.0e-5
assert np.all(diff7 < error7)
expect8 = np.prod(x8, axis=np_axis8, keepdims=keep_dims8)
diff8 = abs(output[8].asnumpy() - expect8)
error8 = np.ones(shape=expect8.shape) * 1.0e-5
assert np.all(diff8 < error8)
expect = np.prod(x, axis=axis, keepdims=keep_dims)
diff = abs(output.asnumpy() - expect)
error = np.ones(shape=expect.shape) * decimal
assert np.all(diff < error)
assert output.shape == expect.shape