!4585 add gpu nccl broadcast

Merge pull request !4585 from baihuawei/broadcast
This commit is contained in:
mindspore-ci-bot 2020-08-18 09:53:52 +08:00 committed by Gitee
commit 3fb58fcbe4
9 changed files with 132 additions and 1 deletions

View File

@ -47,5 +47,15 @@ MS_REG_GPU_KERNEL_ONE(
MS_REG_GPU_KERNEL_ONE(ReduceScatter,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
MS_REG_GPU_KERNEL_ONE(
Broadcast, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
NcclGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
Broadcast, KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
NcclGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(Broadcast,
KernelAttr().AddAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
NcclGpuKernel, int)
} // namespace kernel
} // namespace mindspore

View File

@ -30,11 +30,18 @@
namespace mindspore {
namespace kernel {
enum NcclKernelType { NCCL_ALL_REDUCE = 0, NCCL_ALL_GATHER, NCCL_REDUCE_SCATTER, NCCL_INVALID_TYPE = 255 };
enum NcclKernelType {
NCCL_ALL_REDUCE = 0,
NCCL_ALL_GATHER,
NCCL_REDUCE_SCATTER,
NCCL_BROADCAST,
NCCL_INVALID_TYPE = 255
};
const std::map<std::string, NcclKernelType> kNcclTypeMap = {
{"AllReduce", NCCL_ALL_REDUCE},
{"AllGather", NCCL_ALL_GATHER},
{"ReduceScatter", NCCL_REDUCE_SCATTER},
{"Broadcast", NCCL_BROADCAST},
};
static std::map<std::string, ncclDataType_t> kNcclDtypeMap = {
@ -45,6 +52,7 @@ typedef ncclResult_t (*AllReduce)(const void *, void *, size_t, ncclDataType_t,
typedef ncclResult_t (*AllGather)(const void *, void *, size_t, ncclDataType_t, cudaStream_t, const std::string &);
typedef ncclResult_t (*ReduceScatter)(const void *, void *, size_t, ncclDataType_t, ncclRedOp_t, cudaStream_t,
const std::string &);
typedef ncclResult_t (*Broadcast)(const void *, void *, size_t, ncclDataType_t, int, cudaStream_t, const std::string &);
template <typename T>
class NcclGpuKernel : public GpuKernel {
@ -55,6 +63,7 @@ class NcclGpuKernel : public GpuKernel {
group_name_(""),
input_size_(0),
output_size_(0),
root_(0),
collective_handle_(nullptr),
comm_stream_(nullptr) {}
~NcclGpuKernel() override = default;
@ -96,6 +105,15 @@ class NcclGpuKernel : public GpuKernel {
"ncclReduceScatter failed");
break;
}
case NCCL_BROADCAST: {
auto broadcast_funcptr =
reinterpret_cast<Broadcast>(dlsym(const_cast<void *>(collective_handle_), "Broadcast"));
MS_EXCEPTION_IF_NULL(broadcast_funcptr);
CHECK_NCCL_RET_WITH_EXCEPT((*broadcast_funcptr)(input_addr, output_addr, output_size_ / sizeof(T),
nccl_data_type_, root_, stream, group_name_),
"ncclBroadcast failed");
break;
}
default: {
MS_LOG(EXCEPTION) << "Kernel type " << nccl_kernel_type_ << " is not supported.";
}
@ -167,6 +185,11 @@ class NcclGpuKernel : public GpuKernel {
MS_LOG(EXCEPTION) << "Nccl reduce type " << type << " is not supported.";
}
}
auto root_rank = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(kAttrRootRank);
if (root_rank) {
root_ = GetValue<int>(root_rank);
}
return;
}
@ -176,6 +199,7 @@ class NcclGpuKernel : public GpuKernel {
std::string group_name_;
size_t input_size_;
size_t output_size_;
int root_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;

View File

@ -48,3 +48,8 @@ ncclResult_t ReduceScatter(const void *input_addr, void *output_addr, size_t cou
ncclRedOp_t reduce_type, cudaStream_t stream, const std::string &group) {
return NCCLWrapper::instance().ReduceScatter(input_addr, output_addr, count, data_type, reduce_type, stream, group);
}
ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type, int root,
cudaStream_t stream, const std::string &group) {
return NCCLWrapper::instance().Broadcast(input_addr, output_addr, count, data_type, root, stream, group);
}

View File

@ -45,3 +45,6 @@ extern "C" EXPORT_WRAPPER ncclResult_t AllGather(const void *input_addr, void *o
extern "C" EXPORT_WRAPPER ncclResult_t ReduceScatter(const void *input_addr, void *output_addr, size_t count,
ncclDataType_t data_type, ncclRedOp_t reduce_type,
cudaStream_t stream, const std::string &group);
extern "C" EXPORT_WRAPPER ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count,
ncclDataType_t data_type, int root, cudaStream_t stream,
const std::string &group);

View File

@ -66,6 +66,14 @@ ncclResult_t NCCLWrapper::ReduceScatter(const void *input_addr, void *output_add
return ncclReduceScatter(input_addr, output_addr, count, data_type, reduce_type, group_comm, stream);
}
ncclResult_t NCCLWrapper::Broadcast(const void *input_addr, void *output_addr, size_t count, ncclDataType_t data_type,
int root, cudaStream_t stream, const std::string &group_name) {
CHECK_RET(group_info_.count(group_name), 1,
"Failed to find NCCL communicator for Broadcast by the group name " + group_name);
ncclComm_t group_comm = group_info_[group_name].comm;
return ncclBroadcast(input_addr, output_addr, count, data_type, root, group_comm, stream);
}
void NCCLWrapper::AddGroupInfo(const std::string &group_name, NcclGroupInfo *group) {
if (comm_init_done_) {
CHECK_RET(ncclCommInitRank(&(group->comm), group->size, group->unique_id, group->rank), ncclSuccess,

View File

@ -40,6 +40,8 @@ class NCCLWrapper {
cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t ReduceScatter(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
ncclResult_t Broadcast(const void *input_addr, void *output_addr, size_t count, ncclDataType_t datatype, int root,
cudaStream_t stream, const std::string &group_name = NCCL_WORLD_GROUP);
void AddGroupInfo(const std::string &group_name, NcclGroupInfo *group);
void DestroyGroup(const std::string &group_name);

View File

@ -224,6 +224,7 @@ constexpr auto kAttrLabelForInsertStreamActive = "label_for_insert_stream_active
constexpr auto kAttrFusion = "fusion";
constexpr auto kAttrGroup = "group";
constexpr auto kAttrOp = "op";
constexpr auto kAttrRootRank = "root_rank";
constexpr auto kAttrIsTraining = "is_training";
constexpr auto kAttrFusionId = "fusion_id";
constexpr auto kAttrLabelIndex = "label_index";

View File

@ -46,3 +46,10 @@ def test_nccl_all_gather_op():
def test_nccl_reduce_scatter_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_reduce_scatter_op.py")
assert return_code == 0
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_nccl_broadcast_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_broadcast_op.py")
assert return_code == 0

View File

@ -0,0 +1,71 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
init('nccl')
rank = get_rank()
size = get_group_size()
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3')
self.broadcast1 = P.Broadcast(0)
self.broadcast2 = P.Broadcast(1)
self.broadcast3 = P.Broadcast(2)
def construct(self):
return (self.broadcast1((self.x1,)),
self.broadcast2((self.x2,)),
self.broadcast3((self.x3,)))
def test_Broadcast():
broadcast = Net()
output = broadcast()
expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 1
expect1 = np.ones([3, 1, 3, 3]).astype(np.float32) * 2
expect2 = np.ones([3, 1, 3, 3]).astype(np.float32) * 3
diff0 = output[0][0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert output[0][0].shape == expect0.shape
diff1 = output[1][0].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output[1][0].shape == expect1.shape
diff2 = output[2][0].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output[2][0].shape == expect2.shape