diff --git a/model_zoo/official/lite/image_classification/README.en.md b/model_zoo/official/lite/image_classification/README.en.md index a4e63485857..6755062d6ec 100644 --- a/model_zoo/official/lite/image_classification/README.en.md +++ b/model_zoo/official/lite/image_classification/README.en.md @@ -78,7 +78,13 @@ app ### Configuring MindSpore Lite Dependencies -When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/tutorial/lite/en/master/use/build.html) to generate the MindSpore Lite version.  +When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/tutorial/lite/en/master/use/build.html) to generate the MindSpore Lite version. In this case, you need to use the compile command of generate with image preprocessing module. + +In this example, the build process automatically downloads the `mindspore-lite-1.0.0-minddata-arm64-cpu` by the `app/download.gradle` file and saves in the `app/src/main/cpp` directory. + +Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. + +mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [Download link](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) ``` android{ @@ -126,15 +132,9 @@ target_link_libraries( ) ``` -* In this example, the download.gradle File configuration auto download MindSpore Lite version, placed in the 'app/src/main/cpp/' directory. - - Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. - - mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [Download link](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) - ### Downloading and Deploying a Model File -In this example, the download.gradle File configuration auto download `mobilenetv2.ms `and placed in the 'app / libs / arm64-v8a' directory. +In this example, the download.gradle File configuration auto download `mobilenetv2.ms `and placed in the 'app/libs/arm64-v8a' directory. Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. diff --git a/model_zoo/official/lite/image_classification/README.md b/model_zoo/official/lite/image_classification/README.md index 83f4bf0a283..7014ec716db 100644 --- a/model_zoo/official/lite/image_classification/README.md +++ b/model_zoo/official/lite/image_classification/README.md @@ -86,14 +86,21 @@ app ### 配置MindSpore Lite依赖项 -Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成"mindspore-lite-X.X.X-mindata-armXX-cpu"库文件包(包含`libmindspore-lite.so`库文件和相关头文件,可包含多个兼容架构)。 +Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成`mindspore-lite-{version}-minddata-{os}-{device}.tar.gz`库文件包并解压缩(包含`libmindspore-lite.so`库文件和相关头文件),在本例中需使用生成带图像预处理模块的编译命令。 -本示例中,build过程由download.gradle文件自动从华为服务器下载MindSpore Lite 版本文件,并放置在`app / src / main/cpp/`目录下。 +> version:输出件版本号,与所编译的分支代码对应的版本一致。 +> +> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。 +> +> os:输出件应部署的操作系统。 -* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置: +本示例中,build过程由download.gradle文件自动下载MindSpore Lite 版本文件,并放置在`app/src/main/cpp/`目录下。 - mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) +* 注:若自动下载失败,请手动下载相关库文件,解压并放在对应位置: + mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [下载链接](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) + +在app的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`的编译支持,如下所示: ``` android{ diff --git a/model_zoo/official/lite/image_classification/app/download.gradle b/model_zoo/official/lite/image_classification/app/download.gradle index 941328fd4b9..c0531e0d16a 100644 --- a/model_zoo/official/lite/image_classification/app/download.gradle +++ b/model_zoo/official/lite/image_classification/app/download.gradle @@ -10,7 +10,7 @@ def targetModelFile = "src/main/assets/model/mobilenetv2.ms" def mindSporeLibrary_arm64 = "src/main/cpp/${mindsporeLite_Version}.tar.gz" def modelDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms" -def mindsporeLiteDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/${mindsporeLite_Version}.tar.gz" +def mindsporeLiteDownloadUrl = "https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/${mindsporeLite_Version}.tar.gz" def cleantargetMindSporeInclude = "src/main/cpp" diff --git a/model_zoo/official/lite/object_detection/README.en.md b/model_zoo/official/lite/object_detection/README.en.md index f127e3e6867..6867a3b7667 100644 --- a/model_zoo/official/lite/object_detection/README.en.md +++ b/model_zoo/official/lite/object_detection/README.en.md @@ -43,7 +43,14 @@ This object detection sample program on the Android device includes a Java layer ### Configuring MindSpore Lite Dependencies -In Android studio, the compiled mindpool-lite-x.x.x-mindata-armxx-cpu package (including ` libmindspot- lite.so `The library file and related header files, which can contain multiple compatible architectures), are unzipped and placed in the 'app / SRC / main / CPP' directory of the app project, and the` build.gradle `Cmake and 'arm64-v8a' and 'armeabi-v7a' are configured in the file as follows It is shown as follows: +When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/tutorial/lite/en/master/use/build.html) to generate the MindSpore Lite version. In this case, you need to use the compile command of generate with image preprocessing module. + +In this example, the build process automatically downloads the `mindspore-lite-1.0.0-minddata-arm64-cpu` by the `app/download.gradle` file and saves in the `app/src/main/cpp` directory. + +Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. + +mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [Download link](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) + ``` android{ defaultConfig{ @@ -54,7 +61,7 @@ android{ } ndk{ - abiFilters'armeabi-v7a', 'arm64-v8a' + abiFilters 'arm64-v8a' } } } @@ -82,16 +89,6 @@ target_link_libraries( ) ``` - - -In this example, the download.gradle File configuration auto download library file, placed in the 'app / libs / arm64-v8a' directory. - -Note: if the automatic download fails, please manually download the relevant library files and put them in the corresponding location. - -mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [Download link](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) - - - ### Downloading and Deploying a Model File In this example, the download.gradle File configuration auto download `ssd.ms `and placed in the 'app / libs / arm64-v8a' directory. diff --git a/model_zoo/official/lite/object_detection/README.md b/model_zoo/official/lite/object_detection/README.md index 33b42b01066..fb76b6ab4d5 100644 --- a/model_zoo/official/lite/object_detection/README.md +++ b/model_zoo/official/lite/object_detection/README.md @@ -85,9 +85,22 @@ app ### 配置MindSpore Lite依赖项 -Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成"mindspore-lite-X.X.X-mindata-armXX-cpu"库文件包(包含`libmindspore-lite.so`库文件和相关头文件,可包含多个兼容架构)。 +Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/build.html)生成`mindspore-lite-{version}-minddata-{os}-{device}.tar.gz`库文件包并解压缩(包含`libmindspore-lite.so`库文件和相关头文件),在本例中需使用生成带图像预处理模块的编译命令。 + +> version:输出件版本号,与所编译的分支代码对应的版本一致。 +> +> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。 +> +> os:输出件应部署的操作系统。 + +本示例中,build过程由download.gradle文件自动下载MindSpore Lite 版本文件,并放置在`app/src/main/cpp/`目录下。 + +* 注:若自动下载失败,请手动下载相关库文件,解压并放在对应位置: + + mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [下载链接](https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) + +在app的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`的编译支持,如下所示: -在Android Studio中将编译完成的mindspore-lite-X.X.X-mindata-armXX-cpu压缩包,解压之后放置在APP工程的`app/src/main/cpp`目录下,并在app的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`和`armeabi-v7a`的编译支持,如下所示: ``` android{ defaultConfig{ @@ -126,16 +139,9 @@ target_link_libraries( ) ``` -本示例中,app build过程由download.gradle文件自动从华为服务器下载mindspore所编译的库及相关头文件,并放置在`src/main/cpp`工程目录下。 - - -* 注:若自动下载失败,请手动下载相关库文件并将其放在对应位置: -* mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/mindspore-lite-1.0.0-minddata-arm64-cpu.tar.gz) - - ### 下载及部署模型文件 -从MindSpore Model Hub中下载模型文件,本示例程序中使用的目标检测模型文件为`ssd.ms`,同样通过download.gradle脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。 +从MindSpore Model Hub中下载模型文件,本示例程序中使用的目标检测模型文件为`ssd.ms`,同样通过`download.gradle`脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。 * 注:若下载失败请手动下载模型文件,ssd.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/ssd_mobilenetv2_lite/ssd.ms)。 diff --git a/model_zoo/official/lite/object_detection/app/download.gradle b/model_zoo/official/lite/object_detection/app/download.gradle index 413eb8d3d1f..356a53fa46f 100644 --- a/model_zoo/official/lite/object_detection/app/download.gradle +++ b/model_zoo/official/lite/object_detection/app/download.gradle @@ -10,7 +10,7 @@ def targetModelFile = "src/main/assets/model/ssd.ms" def mindSporeLibrary_arm64 = "src/main/cpp/${mindsporeLite_Version}.tar.gz" def modelDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/ssd_mobilenetv2_lite/ssd.ms" -def mindsporeLiteDownloadUrl = "https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%201.0/${mindsporeLite_Version}.tar.gz" +def mindsporeLiteDownloadUrl = "https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.0.0/lite/android_aarch64/${mindsporeLite_Version}.tar.gz" def cleantargetMindSporeInclude = "src/main/cpp"