forked from mindspore-Ecosystem/mindspore
add more ut and st for SummaryCollector
Has fixed collecting optimizer error when mode is eval
This commit is contained in:
parent
d6d93f16b1
commit
3dc6f6f2d9
|
@ -161,7 +161,7 @@ class SummaryCollector(Callback):
|
|||
self._check_custom_lineage_data(custom_lineage_data)
|
||||
self._custom_lineage_data = custom_lineage_data
|
||||
|
||||
self._optimizer = None
|
||||
self._temp_optimizer = None
|
||||
self._has_saved_train_network = False
|
||||
self._has_saved_custom_data = False
|
||||
self._is_parse_loss_success = True
|
||||
|
@ -369,15 +369,15 @@ class SummaryCollector(Callback):
|
|||
input_data = getattr(cb_params, 'train_dataset_element', None)
|
||||
if input_data is None:
|
||||
self._collect_specified_data['collect_input_data'] = False
|
||||
logger.info("There is not a `train_dataset_element` in cb_params.")
|
||||
logger.info("The 'train_dataset_element' in cb_params is None, maybe there is dataset sink mode.")
|
||||
return
|
||||
|
||||
if isinstance(input_data, (list, tuple)):
|
||||
input_data = input_data[0]
|
||||
try:
|
||||
self._record.add_value(PluginEnum.IMAGE.value, 'input_data/auto', input_data)
|
||||
except ValueError as ex:
|
||||
logger.warning(str(ex))
|
||||
except ValueError:
|
||||
logger.warning('The input data of network are not image, so will not collect by SummaryCollector.')
|
||||
self._collect_specified_data['collect_input_data'] = False
|
||||
return
|
||||
|
||||
|
@ -418,8 +418,8 @@ class SummaryCollector(Callback):
|
|||
|
||||
try:
|
||||
self._record.add_value(PluginEnum.SCALAR.value, 'loss/auto', loss)
|
||||
except ValueError as exc:
|
||||
logger.warning(str(exc))
|
||||
except ValueError:
|
||||
logger.warning("The output of network is not a scalar, so will not collect loss in SummaryCollector.")
|
||||
self._collect_specified_data['collect_metric'] = False
|
||||
|
||||
def _get_loss(self, cb_params):
|
||||
|
@ -438,7 +438,7 @@ class SummaryCollector(Callback):
|
|||
|
||||
output = cb_params.net_outputs
|
||||
if output is None:
|
||||
logger.warning("Can not find any output by this network.")
|
||||
logger.warning("Can not find any output by this network, so will not collect loss in SummaryCollector.")
|
||||
self._is_parse_loss_success = False
|
||||
return None
|
||||
|
||||
|
@ -448,7 +448,7 @@ class SummaryCollector(Callback):
|
|||
# If the output is a list, since the default network returns loss first,
|
||||
# we assume that the first one is loss.
|
||||
loss = output[0]
|
||||
elif isinstance(output, Tensor) and (not output.shape or output.shape == [1]):
|
||||
elif isinstance(output, Tensor) and (not output.shape or output.shape == (1,)):
|
||||
loss_numpy = output.asnumpy()
|
||||
loss = float(np.atleast_1d(loss_numpy)[0])
|
||||
else:
|
||||
|
@ -473,15 +473,15 @@ class SummaryCollector(Callback):
|
|||
"""
|
||||
# 'optimizer_failed' means find optimizer failed, so we will not collect data about optimizer.
|
||||
optimizer_failed = 'Failed'
|
||||
if self._optimizer == optimizer_failed:
|
||||
if self._temp_optimizer == optimizer_failed:
|
||||
return None
|
||||
|
||||
if self._optimizer is not None:
|
||||
return self._optimizer
|
||||
if self._temp_optimizer is not None:
|
||||
return self._temp_optimizer
|
||||
|
||||
optimizer = cb_params.optimizer
|
||||
if optimizer is None:
|
||||
network = cb_params.train_network if cb_params.mode == 'train' else cb_params.eval_work
|
||||
network = cb_params.train_network if cb_params.mode == 'train' else cb_params.eval_network
|
||||
optimizer = self._parse_optimizer_by_network(network)
|
||||
|
||||
if optimizer is None or not isinstance(optimizer, Optimizer):
|
||||
|
@ -489,7 +489,7 @@ class SummaryCollector(Callback):
|
|||
"optimizer, so we will not collect data about optimizer in SummaryCollector.")
|
||||
optimizer = None
|
||||
|
||||
self._optimizer = optimizer if optimizer is not None else optimizer_failed
|
||||
self._temp_optimizer = optimizer if optimizer is not None else optimizer_failed
|
||||
|
||||
return optimizer
|
||||
|
||||
|
@ -765,7 +765,7 @@ class SummaryCollector(Callback):
|
|||
cb_params (_InternalCallbackParam): Callback parameters.
|
||||
|
||||
Returns:
|
||||
Union[Loss_fn, None], a Cell object, if parse failed, will return None.
|
||||
Union[Cell, None], a Cell object, if parse failed, will return None.
|
||||
"""
|
||||
loss_fn = cb_params.loss_fn
|
||||
if loss_fn is not None:
|
||||
|
|
|
@ -1,99 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
import os
|
||||
import numpy as np
|
||||
from apply_momentum import ApplyMomentum
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn import wrap
|
||||
from mindspore import Tensor, Model
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
CUR_DIR = os.getcwd()
|
||||
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class MsWrapper(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(MsWrapper, self).__init__(auto_prefix=False)
|
||||
self._network = network
|
||||
|
||||
@ms_function
|
||||
def construct(self, *args):
|
||||
return self._network(*args)
|
||||
|
||||
|
||||
def me_train_tensor(net, input_np, label_np, epoch_size=2):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])),
|
||||
filter(lambda x: x.requires_grad, net.get_parameters()))
|
||||
Model(net, loss, opt)
|
||||
_network = wrap.WithLossCell(net, loss)
|
||||
_train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt))
|
||||
_train_net.set_train()
|
||||
with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net) as summary_writer:
|
||||
for epoch in range(0, epoch_size):
|
||||
print(f"epoch %d" % (epoch))
|
||||
output = _train_net(Tensor(input_np), Tensor(label_np))
|
||||
summary_writer.record(i)
|
||||
print("********output***********")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def me_infer_tensor(net, input_np):
|
||||
net.set_train()
|
||||
net = MsWrapper(net)
|
||||
output = net(Tensor(input_np))
|
||||
return output
|
||||
|
||||
|
||||
def test_net():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, cin, cout):
|
||||
super(Net, self).__init__()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
self.conv = nn.Conv2d(cin, cin, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same")
|
||||
self.bn = nn.BatchNorm2d(cin, momentum=0.1, eps=0.0001)
|
||||
self.add = P.TensorAdd()
|
||||
self.relu = P.ReLU()
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.reshape = P.Reshape()
|
||||
self.dense = nn.Dense(cin, cout)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = input_x
|
||||
output = self.maxpool(output)
|
||||
identity = output
|
||||
output = self.conv(output)
|
||||
output = self.bn(output)
|
||||
output = self.add(output, identity)
|
||||
output = self.relu(output)
|
||||
output = self.mean(output, (-2, -1))
|
||||
output = self.reshape(output, (32, -1))
|
||||
output = self.dense(output)
|
||||
return output
|
||||
|
||||
net = Net(2048, 1001)
|
||||
input_np = np.ones([32, 2048, 14, 14]).astype(np.float32) * 0.01
|
||||
label_np = np.ones([32]).astype(np.int32)
|
||||
me_train_tensor(net, input_np, label_np)
|
||||
# me_infer_tensor(net, input_np)
|
|
@ -1,89 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Summary gpu st."""
|
||||
import os
|
||||
import random
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class SummaryNet(nn.Cell):
|
||||
"""Summary net."""
|
||||
def __init__(self, tag_tuple=None, scalar=1):
|
||||
super(SummaryNet, self).__init__()
|
||||
self.summary_s = P.ScalarSummary()
|
||||
self.summary_i = P.ImageSummary()
|
||||
self.summary_t = P.TensorSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.add = P.TensorAdd()
|
||||
self.tag_tuple = tag_tuple
|
||||
self.scalar = scalar
|
||||
|
||||
def construct(self, x, y, image):
|
||||
"""Run summary net."""
|
||||
self.summary_i("image", image)
|
||||
self.summary_s("x1", x)
|
||||
z = self.add(x, y)
|
||||
self.summary_t("z1", z)
|
||||
self.histogram_summary("histogram", z)
|
||||
return z
|
||||
|
||||
|
||||
def train_summary_record(test_writer, steps):
|
||||
"""Train and record summary."""
|
||||
net = SummaryNet()
|
||||
out_me_dict = {}
|
||||
for i in range(0, steps):
|
||||
x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
|
||||
image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
|
||||
out_put = net(x, y, image)
|
||||
test_writer.record(i)
|
||||
out_me_dict[i] = out_put.asnumpy()
|
||||
return out_me_dict
|
||||
|
||||
|
||||
class TestGpuSummary:
|
||||
"""Test Gpu summary."""
|
||||
summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
|
||||
|
||||
def setup_method(self):
|
||||
"""Run before method."""
|
||||
if not os.path.exists(self.summary_dir):
|
||||
os.mkdir(self.summary_dir)
|
||||
|
||||
def teardown_method(self):
|
||||
"""Run after method."""
|
||||
if os.path.exists(self.summary_dir):
|
||||
shutil.rmtree(self.summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_step10_summaryrecord1(self):
|
||||
"""Test record 10 step summary."""
|
||||
with SummaryRecord(self.summary_dir) as test_writer:
|
||||
train_summary_record(test_writer, steps=10)
|
|
@ -0,0 +1,194 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test model train """
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
import shutil
|
||||
|
||||
import pytest
|
||||
|
||||
from mindspore import dataset as ds
|
||||
from mindspore import nn, Tensor, context
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.dataset.transforms import c_transforms as C
|
||||
from mindspore.dataset.transforms.vision import c_transforms as CV
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.callback import SummaryCollector
|
||||
|
||||
from tests.summary_utils import SummaryReader
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""Define LeNet5 network."""
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
self.scalar_summary = P.ScalarSummary()
|
||||
self.image_summary = P.ImageSummary()
|
||||
self.histogram_summary = P.HistogramSummary()
|
||||
self.tensor_summary = P.TensorSummary()
|
||||
self.channel = Tensor(channel)
|
||||
|
||||
def construct(self, data):
|
||||
"""define construct."""
|
||||
self.image_summary('image', data)
|
||||
output = self.conv1(data)
|
||||
self.histogram_summary('histogram', output)
|
||||
output = self.relu(output)
|
||||
self.tensor_summary('tensor', output)
|
||||
output = self.max_pool2d(output)
|
||||
output = self.conv2(output)
|
||||
output = self.relu(output)
|
||||
output = self.max_pool2d(output)
|
||||
output = self.flatten(output)
|
||||
output = self.fc1(output)
|
||||
output = self.relu(output)
|
||||
output = self.fc2(output)
|
||||
output = self.relu(output)
|
||||
output = self.fc3(output)
|
||||
self.scalar_summary('scalar', self.channel)
|
||||
return output
|
||||
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1):
|
||||
"""create dataset for train or test"""
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift=0.0)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=10000) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
||||
|
||||
|
||||
class TestSummary:
|
||||
"""Test summary collector the basic function."""
|
||||
base_summary_dir = ''
|
||||
mnist_path = '/home/workspace/mindspore_dataset/mnist'
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
"""Run before test this class."""
|
||||
cls.base_summary_dir = tempfile.mkdtemp(suffix='summary')
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
"""Run after test this class."""
|
||||
if os.path.exists(cls.base_summary_dir):
|
||||
shutil.rmtree(cls.base_summary_dir)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_summary_ascend(self):
|
||||
"""Test summary ascend."""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
self._run_network()
|
||||
|
||||
def _run_network(self, dataset_sink_mode=True):
|
||||
lenet = LeNet5()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()})
|
||||
summary_dir = tempfile.mkdtemp(dir=self.base_summary_dir)
|
||||
summary_collector = SummaryCollector(summary_dir=summary_dir, collect_freq=1)
|
||||
|
||||
ds_train = create_dataset(os.path.join(self.mnist_path, "train"))
|
||||
model.train(1, ds_train, callbacks=[summary_collector], dataset_sink_mode=dataset_sink_mode)
|
||||
|
||||
ds_eval = create_dataset(os.path.join(self.mnist_path, "test"))
|
||||
model.eval(ds_eval, dataset_sink_mode=dataset_sink_mode, callbacks=[summary_collector])
|
||||
|
||||
self._check_summary_result(summary_dir)
|
||||
|
||||
@staticmethod
|
||||
def _check_summary_result(summary_dir):
|
||||
summary_file_path = ''
|
||||
for file in os.listdir(summary_dir):
|
||||
if re.search("_MS", file):
|
||||
summary_file_path = os.path.join(summary_dir, file)
|
||||
break
|
||||
|
||||
assert not summary_file_path
|
||||
|
||||
with SummaryReader(summary_file_path) as summary_reader:
|
||||
tags = set()
|
||||
|
||||
# Read the event that record by SummaryCollector.begin
|
||||
summary_reader.read_event()
|
||||
|
||||
summary_event = summary_reader.read_event()
|
||||
for value in summary_event.summary.value:
|
||||
tags.add(value.tag)
|
||||
|
||||
# There will not record input data when dataset sink mode is True
|
||||
expected_tags = ['conv1.weight/auto', 'conv2.weight/auto', 'fc1.weight/auto', 'fc1.bias/auto',
|
||||
'fc2.weight/auto', 'histogram', 'image', 'scalar', 'tensor']
|
||||
assert set(expected_tags) == tags
|
|
@ -38,6 +38,7 @@ class SummaryReader:
|
|||
def __init__(self, canonical_file_path, ignore_version_event=True):
|
||||
self._file_path = canonical_file_path
|
||||
self._ignore_version_event = ignore_version_event
|
||||
self._file_handler = None
|
||||
|
||||
def __enter__(self):
|
||||
self._file_handler = open(self._file_path, "rb")
|
||||
|
|
|
@ -16,9 +16,50 @@
|
|||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
from importlib import import_module
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore import Parameter
|
||||
from mindspore.train.callback import SummaryCollector
|
||||
from mindspore.train.callback import _InternalCallbackParam
|
||||
from mindspore.train.summary.enum import ModeEnum, PluginEnum
|
||||
from mindspore.train.summary import SummaryRecord
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
from mindspore.ops.operations import TensorAdd
|
||||
|
||||
|
||||
_VALUE_CACHE = list()
|
||||
|
||||
|
||||
def add_value(plugin, name, value):
|
||||
"""This function is mock the function in SummaryRecord."""
|
||||
global _VALUE_CACHE
|
||||
_VALUE_CACHE.append((plugin, name, value))
|
||||
|
||||
|
||||
def get_value():
|
||||
"""Get the value which is added by add_value function."""
|
||||
global _VALUE_CACHE
|
||||
|
||||
value = _VALUE_CACHE
|
||||
_VALUE_CACHE = list()
|
||||
return value
|
||||
|
||||
|
||||
class CustomNet(Cell):
|
||||
"""Define custom netwrok."""
|
||||
def __init__(self):
|
||||
super(CustomNet, self).__init__()
|
||||
self.add = TensorAdd
|
||||
self.optimizer = Optimizer(learning_rate=1, parameters=[Parameter(Tensor(1), 'weight')])
|
||||
|
||||
def construct(self, data):
|
||||
return data
|
||||
|
||||
|
||||
class TestSummaryCollector:
|
||||
|
@ -34,6 +75,10 @@ class TestSummaryCollector:
|
|||
if os.path.exists(self.base_summary_dir):
|
||||
shutil.rmtree(self.base_summary_dir)
|
||||
|
||||
def teardown_method(self):
|
||||
"""Run after each test function."""
|
||||
get_value()
|
||||
|
||||
@pytest.mark.parametrize("summary_dir", [1234, None, True, ''])
|
||||
def test_params_with_summary_dir_value_error(self, summary_dir):
|
||||
"""Test the exception scenario for summary dir."""
|
||||
|
@ -182,3 +227,151 @@ class TestSummaryCollector:
|
|||
f'bug got {type(param_value).__name__}.'
|
||||
|
||||
assert expected_msg == str(exc.value)
|
||||
|
||||
def test_check_callback_with_multi_instances(self):
|
||||
"""Use multi SummaryCollector instances to test check_callback function."""
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.list_callback = [
|
||||
SummaryCollector(tempfile.mkdtemp(dir=self.base_summary_dir)),
|
||||
SummaryCollector(tempfile.mkdtemp(dir=self.base_summary_dir))
|
||||
]
|
||||
with pytest.raises(ValueError) as exc:
|
||||
SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))._check_callbacks(cb_params)
|
||||
assert f"more than one SummaryCollector instance in callback list" in str(exc.value)
|
||||
|
||||
def test_collect_input_data_with_train_dataset_element_none(self):
|
||||
"""Test the param 'train_dataset_element' in cb_params is none."""
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.train_dataset_element = None
|
||||
summary_collector = SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))
|
||||
summary_collector._collect_input_data(cb_params)
|
||||
assert not summary_collector._collect_specified_data['collect_input_data']
|
||||
|
||||
@mock.patch.object(SummaryRecord, 'add_value')
|
||||
def test_collect_input_data_success(self, mock_add_value):
|
||||
"""Mock a image data, and collect image data success."""
|
||||
mock_add_value.side_effect = add_value
|
||||
cb_params = _InternalCallbackParam()
|
||||
image_data = Tensor(np.random.randint(0, 255, size=(1, 1, 1, 1)).astype(np.uint8))
|
||||
cb_params.train_dataset_element = image_data
|
||||
with SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir))) as summary_collector:
|
||||
summary_collector._collect_input_data(cb_params)
|
||||
# Note Here need to asssert the result and expected data
|
||||
|
||||
@mock.patch.object(SummaryRecord, 'add_value')
|
||||
def test_collect_dataset_graph_success(self, mock_add_value):
|
||||
"""Test collect dataset graph."""
|
||||
dataset = import_module('mindspore.dataset')
|
||||
mock_add_value.side_effect = add_value
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.train_dataset = dataset.MnistDataset(dataset_dir=tempfile.mkdtemp(dir=self.base_summary_dir))
|
||||
cb_params.mode = ModeEnum.TRAIN.value
|
||||
with SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir))) as summary_collector:
|
||||
summary_collector._collect_dataset_graph(cb_params)
|
||||
plugin, name, _ = get_value()[0]
|
||||
assert plugin == 'dataset_graph'
|
||||
assert name == 'train_dataset'
|
||||
|
||||
@pytest.mark.parametrize("net_output, expected_loss", [
|
||||
(1, Tensor(1)),
|
||||
([1], Tensor(1)),
|
||||
([Tensor(1)], Tensor(1)),
|
||||
(Tensor([1]), Tensor(1)),
|
||||
(tuple([1]), Tensor(1)),
|
||||
(None, None)
|
||||
])
|
||||
def test_get_loss(self, net_output, expected_loss):
|
||||
"""Test get loss success and failed."""
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.net_outputs = net_output
|
||||
summary_collector = SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))
|
||||
|
||||
assert summary_collector._is_parse_loss_success
|
||||
assert summary_collector._get_loss(cb_params) == expected_loss
|
||||
|
||||
if expected_loss is None:
|
||||
assert not summary_collector._is_parse_loss_success
|
||||
|
||||
def test_get_optimizer_from_cb_params_success(self):
|
||||
"""Test get optimizer success from cb params."""
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.optimizer = Optimizer(learning_rate=0.1, parameters=[Parameter(Tensor(1), 'weight')])
|
||||
summary_collector = SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))
|
||||
optimizer = summary_collector._get_optimizer(cb_params)
|
||||
assert optimizer == cb_params.optimizer
|
||||
|
||||
# Test get optimizer again
|
||||
assert summary_collector._get_optimizer(cb_params) == cb_params.optimizer
|
||||
|
||||
@pytest.mark.parametrize('mode', [ModeEnum.TRAIN.value, ModeEnum.EVAL.value])
|
||||
def test_get_optimizer_from_network(self, mode):
|
||||
"""Get optimizer from train network"""
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.optimizer = None
|
||||
cb_params.mode = mode
|
||||
if mode == ModeEnum.TRAIN.value:
|
||||
cb_params.train_network = CustomNet()
|
||||
else:
|
||||
cb_params.eval_network = CustomNet()
|
||||
summary_collector = SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))
|
||||
optimizer = summary_collector._get_optimizer(cb_params)
|
||||
assert isinstance(optimizer, Optimizer)
|
||||
|
||||
def test_get_optimizer_failed(self):
|
||||
"""Test get optimizer failed."""
|
||||
class Net(Cell):
|
||||
"""Define net."""
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = TensorAdd()
|
||||
|
||||
def construct(self, data):
|
||||
return data
|
||||
|
||||
cb_params = _InternalCallbackParam()
|
||||
cb_params.optimizer = None
|
||||
cb_params.train_network = Net()
|
||||
cb_params.mode = ModeEnum.TRAIN.value
|
||||
summary_collector = SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir)))
|
||||
optimizer = summary_collector._get_optimizer(cb_params)
|
||||
assert optimizer is None
|
||||
assert summary_collector._temp_optimizer == 'Failed'
|
||||
|
||||
# Test get optimizer again
|
||||
optimizer = summary_collector._get_optimizer(cb_params)
|
||||
assert optimizer is None
|
||||
assert summary_collector._temp_optimizer == 'Failed'
|
||||
|
||||
@pytest.mark.parametrize("histogram_regular, expected_names, expected_values", [
|
||||
(
|
||||
'conv1|conv2',
|
||||
['conv1.weight1/auto', 'conv2.weight2/auto', 'conv1.bias1/auto'],
|
||||
[1, 2, 3]
|
||||
),
|
||||
(
|
||||
None,
|
||||
['conv1.weight1/auto', 'conv2.weight2/auto', 'conv1.bias1/auto', 'conv3.bias/auto', 'conv5.bias/auto'],
|
||||
[1, 2, 3, 4, 5]
|
||||
)
|
||||
])
|
||||
@mock.patch.object(SummaryRecord, 'add_value')
|
||||
def test_collect_histogram_from_regular(self, mock_add_value, histogram_regular, expected_names, expected_values):
|
||||
"""Test collect histogram from regular success."""
|
||||
mock_add_value.side_effect = add_value
|
||||
cb_params = _InternalCallbackParam()
|
||||
parameters = [
|
||||
Parameter(Tensor(1), 'conv1.weight1'),
|
||||
Parameter(Tensor(2), 'conv2.weight2'),
|
||||
Parameter(Tensor(3), 'conv1.bias1'),
|
||||
Parameter(Tensor(4), 'conv3.bias'),
|
||||
Parameter(Tensor(5), 'conv5.bias'),
|
||||
Parameter(Tensor(6), 'conv6.bias'),
|
||||
]
|
||||
cb_params.optimizer = Optimizer(learning_rate=0.1, parameters=parameters)
|
||||
with SummaryCollector((tempfile.mkdtemp(dir=self.base_summary_dir))) as summary_collector:
|
||||
summary_collector._collect_specified_data['histogram_regular'] = histogram_regular
|
||||
summary_collector._collect_histogram(cb_params)
|
||||
result = get_value()
|
||||
assert PluginEnum.HISTOGRAM.value == result[0][0]
|
||||
assert expected_names == [data[1] for data in result]
|
||||
assert expected_values == [data[2] for data in result]
|
||||
|
|
Loading…
Reference in New Issue