forked from mindspore-Ecosystem/mindspore
!2839 support vm for PopulationCount
Merge pull request !2839 from jiangjinsheng/vm_population_count
This commit is contained in:
commit
3d377c51b9
|
@ -284,3 +284,4 @@ from .scatter_div import _scatter_div_tbe
|
|||
from .mod import _mod_tbe
|
||||
from .max_pool_grad_grad import _max_pool_grad_grad_tbe
|
||||
from .max_pool_grad_grad_with_argmax import _max_pool_grad_grad_with_argmax_tbe
|
||||
from .population_count import _population_count_tbe
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""PopulationCount op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
population_count_op_info = TBERegOp("PopulationCount") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("population_count.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("population_count") \
|
||||
.partial_flag(True) \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.I16_5HD, DataType.U8_5HD) \
|
||||
.dtype_format(DataType.I16_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_5HD, DataType.U8_5HD) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U8_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(population_count_op_info)
|
||||
def _population_count_tbe():
|
||||
"""PopulationCount TBE register"""
|
||||
return
|
|
@ -76,7 +76,7 @@ from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, Appl
|
|||
ApplyAdaMax, ApplyAdadelta, ApplyAdagrad, ApplyAdagradV2,
|
||||
ApplyAddSign, ApplyPowerSign, ApplyGradientDescent, ApplyProximalGradientDescent,
|
||||
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK)
|
||||
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode,
|
||||
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode, PopulationCount,
|
||||
CheckValid, MakeRefKey, Partial, Depend, CheckBprop)
|
||||
from .thor_ops import *
|
||||
|
||||
|
@ -328,7 +328,8 @@ __all__ = [
|
|||
"InplaceUpdate",
|
||||
"InTopK",
|
||||
"LRN",
|
||||
"Mod"
|
||||
"Mod",
|
||||
"PopulationCount"
|
||||
]
|
||||
|
||||
__all__.sort()
|
||||
|
|
|
@ -51,6 +51,7 @@ class Assign(PrimitiveWithInfer):
|
|||
('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
|
||||
('value', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output'])
|
||||
|
@ -324,6 +325,7 @@ class Partial(Primitive):
|
|||
partial_func = functools.partial(func, *args[1:])
|
||||
return partial_func
|
||||
|
||||
|
||||
class Depend(Primitive):
|
||||
"""
|
||||
Depend is used for process side-effect operations.
|
||||
|
@ -457,3 +459,32 @@ class ConfusionMatrix(PrimitiveWithInfer):
|
|||
args = {"labels": labels, "predictions": predictions}
|
||||
validator.check_tensor_type_same(args, (mstype.number_type), self.name)
|
||||
return labels
|
||||
|
||||
|
||||
class PopulationCount(PrimitiveWithInfer):
|
||||
r"""
|
||||
Calculate population count.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - The data type should be int16 or uint16.
|
||||
|
||||
Outputs:
|
||||
Tensor, with shape same as the input.
|
||||
|
||||
Examples:
|
||||
>>> population_count = P.PopulationCount()
|
||||
>>> x_input = Tensor([0, 1, 3], mindspore.int16)
|
||||
>>> population_count(x_input)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
args = {"x": x_dtype}
|
||||
validator.check_tensor_type_same(args, (mstype.int16, mstype.uint16,), self.name)
|
||||
return mstype.tensor_type(mstype.uint8)
|
||||
|
|
|
@ -2143,7 +2143,10 @@ test_case_other_ops = [
|
|||
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
|
||||
Tensor(np.array([1.2]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
|
||||
('PopulationCount', {
|
||||
'block': P.PopulationCount(),
|
||||
'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.int16))],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_quant_ops = [
|
||||
|
|
Loading…
Reference in New Issue