forked from mindspore-Ecosystem/mindspore
!4801 Must set or change parallel mode before any Initializer created
Merge pull request !4801 from yihuaijie/dev
This commit is contained in:
commit
3d06cbf987
|
@ -81,6 +81,8 @@ void ParallelContext::set_mirror_mean(bool mirror_mean) { mirror_mean_ = mirror_
|
|||
|
||||
void ParallelContext::set_full_batch(bool full_batch) { full_batch_ = full_batch; }
|
||||
|
||||
void ParallelContext::set_has_initializer(bool has_initializer) { has_initializer_ = has_initializer; }
|
||||
|
||||
void ParallelContext::set_cast_before_mirror(bool cast_before_mirror) { cast_before_mirror_ = cast_before_mirror; }
|
||||
|
||||
void ParallelContext::set_loss_repeated_mean(bool loss_repeated_mean) { loss_repeated_mean_ = loss_repeated_mean; }
|
||||
|
|
|
@ -58,6 +58,9 @@ class ParallelContext {
|
|||
void set_full_batch(bool full_batch);
|
||||
bool full_batch() const { return full_batch_; }
|
||||
|
||||
void set_has_initializer(bool has_initializer);
|
||||
bool has_initializer() const { return has_initializer_; }
|
||||
|
||||
void set_cast_before_mirror(bool cast_before_mirror);
|
||||
bool cast_before_mirror() const { return cast_before_mirror_; }
|
||||
|
||||
|
@ -112,6 +115,7 @@ class ParallelContext {
|
|||
static std::shared_ptr<ParallelContext> inst_context_;
|
||||
bool mirror_mean_;
|
||||
bool full_batch_;
|
||||
bool has_initializer_ = false;
|
||||
bool cast_before_mirror_;
|
||||
bool loss_repeated_mean_;
|
||||
int32_t device_num_;
|
||||
|
|
|
@ -193,6 +193,8 @@ PYBIND11_MODULE(_c_expression, m) {
|
|||
.def("get_strategy_ckpt_save_file", &ParallelContext::strategy_ckpt_save_file, "Get strategy checkpoint save file.")
|
||||
.def("set_full_batch", &ParallelContext::set_full_batch, "Set whether load full batch on each device.")
|
||||
.def("get_full_batch", &ParallelContext::full_batch, "Get whether load full batch on each device.")
|
||||
.def("set_has_initializer", &ParallelContext::set_has_initializer, "Set whether any Initializer has been created.")
|
||||
.def("get_has_initializer", &ParallelContext::has_initializer, "Get whether any Initializer has been created.")
|
||||
.def("set_enable_parallel_optimizer", &ParallelContext::set_enable_parallel_optimizer,
|
||||
"Set enable/disable parallel optimizer.")
|
||||
.def("get_enable_parallel_optimizer", &ParallelContext::enable_parallel_optimizer,
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore import log as logger
|
|||
from .._c_expression import generate_key, Executor_, Tensor, MetaTensor, PynativeExecutor_
|
||||
from .._c_expression import verify_inputs_signature, init_exec_dataset, _set_dataset_mode_config, init_backend
|
||||
from .tensor import Tensor as MsTensor
|
||||
from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_tensor
|
||||
from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_tensor, _set_has_initializer
|
||||
# store ms_function class compiled pipeline cache
|
||||
ms_compile_cache = {}
|
||||
|
||||
|
@ -383,6 +383,7 @@ class _Executor:
|
|||
Str, the full phase of the cell.
|
||||
Bool, if the graph has been compiled before, return False, else return True.
|
||||
"""
|
||||
_set_has_initializer(False)
|
||||
obj.check_names()
|
||||
args_names, args_list = _generate_pip_args(obj, *args)
|
||||
dic = dict(zip(args_names, args_list))
|
||||
|
|
|
@ -24,6 +24,7 @@ from mindspore import log as logger
|
|||
from . import dtype as mstype
|
||||
from .tensor import Tensor
|
||||
from .._c_expression import random_normal
|
||||
from ..parallel._utils import _set_has_initializer
|
||||
|
||||
_INITIALIZER_ALIAS = dict()
|
||||
|
||||
|
@ -42,6 +43,7 @@ class Initializer:
|
|||
self._kwargs = kwargs
|
||||
self.shape = None
|
||||
self.dtype = None
|
||||
_set_has_initializer(True)
|
||||
|
||||
def _initialize(self, *kwargs):
|
||||
raise NotImplementedError('Must be overridden!')
|
||||
|
|
|
@ -437,6 +437,8 @@ def set_auto_parallel_context(**kwargs):
|
|||
If a program has tasks with different parallel modes, then before setting new parallel mode for
|
||||
next task, interface mindspore.context.reset_auto_parallel_context() needs to be called to reset
|
||||
the configuration.
|
||||
Setting or changing parallel modes must be called before any Initializer created, or RuntimeError
|
||||
will be raised.
|
||||
|
||||
Args:
|
||||
device_num (int): Available device number, the value must be in [1, 4096]. Default: 1.
|
||||
|
@ -477,6 +479,7 @@ def set_auto_parallel_context(**kwargs):
|
|||
|
||||
Raises:
|
||||
ValueError: If input key is not attribute in auto parallel context.
|
||||
RuntimeError: If there is any Initializer created before setting or changing parallel_mode.
|
||||
|
||||
Examples:
|
||||
>>> context.set_auto_parallel_context(device_num=8)
|
||||
|
|
|
@ -176,8 +176,12 @@ class _AutoParallelContext:
|
|||
|
||||
Raises:
|
||||
ValueError: If parallel mode is not supported.
|
||||
RuntimeError: If there is any Initializer created before setting or changing parallel_mode.
|
||||
"""
|
||||
self.check_context_handle()
|
||||
if self.get_has_initializer():
|
||||
self.set_has_initializer(False)
|
||||
raise RuntimeError("Must set or change parallel mode before any Initializer created.")
|
||||
ret = self._context_handle.set_parallel_mode(parallel_mode)
|
||||
if ret is False:
|
||||
raise ValueError("Parallel mode does not support {}".format(parallel_mode))
|
||||
|
@ -249,6 +253,21 @@ class _AutoParallelContext:
|
|||
self.check_context_handle()
|
||||
return self._context_handle.get_full_batch()
|
||||
|
||||
def set_has_initializer(self, has_initializer):
|
||||
"""
|
||||
Set whether any Initializer has been created.
|
||||
|
||||
Args:
|
||||
has_initializer (bool): True if a Initializer created.
|
||||
"""
|
||||
self.check_context_handle()
|
||||
self._context_handle.set_has_initializer(has_initializer)
|
||||
|
||||
def get_has_initializer(self):
|
||||
"""Get whether any Initializer has been created."""
|
||||
self.check_context_handle()
|
||||
return self._context_handle.get_has_initializer()
|
||||
|
||||
def set_strategy_ckpt_save_file(self, strategy_ckpt_save_file):
|
||||
"""
|
||||
Set strategy checkpoint save path.
|
||||
|
@ -543,6 +562,7 @@ def _set_auto_parallel_context(**kwargs):
|
|||
|
||||
Raises:
|
||||
ValueError: If input key is not attribute in auto parallel context.
|
||||
RuntimeError: If there is any Initializer created before setting or changing parallel_mode.
|
||||
"""
|
||||
for key, value in kwargs.items():
|
||||
if key not in _set_auto_parallel_context_func_map:
|
||||
|
|
|
@ -32,6 +32,19 @@ def _get_full_batch():
|
|||
"""Get whether to use full_batch."""
|
||||
return auto_parallel_context().get_full_batch()
|
||||
|
||||
def _get_has_initializer():
|
||||
"""Get whether any Initializer has been created."""
|
||||
return auto_parallel_context().get_has_initializer()
|
||||
|
||||
def _set_has_initializer(has_initializer):
|
||||
"""
|
||||
Set whether any Initializer has been created.
|
||||
|
||||
Args:
|
||||
has_initializer (bool): True if a Initializer created.
|
||||
"""
|
||||
auto_parallel_context().set_has_initializer(has_initializer)
|
||||
|
||||
|
||||
def _need_to_full():
|
||||
"""Check whether to convert input to full shape or tensor."""
|
||||
|
|
|
@ -78,6 +78,7 @@ def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|||
|
||||
|
||||
def test_lenet_nccl():
|
||||
context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size())
|
||||
net = LeNet()
|
||||
net.set_train()
|
||||
|
||||
|
@ -86,7 +87,6 @@ def test_lenet_nccl():
|
|||
mom_optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
context.set_auto_parallel_context(parallel_mode="data_parallel", mirror_mean=True, device_num=get_group_size())
|
||||
train_network = TrainOneStepCell(net_with_criterion, mom_optimizer)
|
||||
train_network.set_train()
|
||||
losses = []
|
||||
|
|
|
@ -24,6 +24,7 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor, Model, ParallelMode
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
|
||||
_current_dir = os.path.dirname(os.path.realpath(__file__)) + "/../test_data"
|
||||
|
||||
|
@ -89,3 +90,4 @@ def test_lenet5_train_step_training_pynative():
|
|||
Model(network=network, loss_fn=loss_fn, optimizer=optimizer)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.reset_auto_parallel_context()
|
||||
_set_has_initializer(False)
|
||||
|
|
|
@ -96,6 +96,8 @@ def test_on_momentum():
|
|||
|
||||
def test_data_parallel_with_cast():
|
||||
"""test_data_parallel_with_cast"""
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=8)
|
||||
predict = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.zeros([1, 10]).astype(np.float32))
|
||||
net = LeNet5()
|
||||
|
@ -107,8 +109,6 @@ def test_data_parallel_with_cast():
|
|||
learning_rate=0.1,
|
||||
momentum=0.9)
|
||||
net = WithLossCell(net, loss_fn)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True, device_num=8)
|
||||
net = TrainOneStepCell(net, optimizer)
|
||||
|
||||
_executor.compile(net, predict, label)
|
||||
|
|
|
@ -21,7 +21,7 @@ from mindspore import context, Tensor, Parameter, ParameterTuple
|
|||
from mindspore._checkparam import _check_str_by_regular
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.initializer import initializer
|
||||
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
|
||||
def test_parameter_init():
|
||||
dat = np.array([[1, 2, 3], [2, 3, 4]])
|
||||
|
@ -170,6 +170,7 @@ def test_scalar_parameter_update():
|
|||
|
||||
|
||||
def test_parameter_lazy_init():
|
||||
_set_has_initializer(False)
|
||||
# support lazy init in SEMI_AUTO_PARALLEL mode
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
|
||||
|
|
|
@ -20,6 +20,7 @@ from mindspore import context
|
|||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
|
@ -60,12 +61,13 @@ def compile_net(net, x, y):
|
|||
|
||||
|
||||
def test_add_relu_stride_slice():
|
||||
_set_has_initializer(False)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=7)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy0 = ((1, 1), (1, 1))
|
||||
strategy1 = ((8, 1),)
|
||||
net = Grad(NetWithLoss(AddRelu(strategy0, strategy1)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
|
@ -73,12 +75,13 @@ def test_add_relu_stride_slice():
|
|||
|
||||
|
||||
def test_add_relu_all_gather():
|
||||
_set_has_initializer(False)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=7)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy0 = ((8, 1), (8, 1))
|
||||
strategy1 = ((1, 1),)
|
||||
net = Grad(NetWithLoss(AddRelu(strategy0, strategy1)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
|
|
|
@ -23,6 +23,7 @@ from mindspore.nn.optim.momentum import Momentum
|
|||
from mindspore.parallel import _cost_model_context as cost_model_context
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.train import Model, ParallelMode
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
|
@ -105,10 +106,8 @@ def train_common(net):
|
|||
momentum = 0.9
|
||||
epoch_size = 2
|
||||
device_num = 4
|
||||
context.reset_auto_parallel_context()
|
||||
auto_parallel_context().set_enable_all_reduce_fusion(enable_all_reduce_fusion=True)
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num,
|
||||
parameter_broadcast=False)
|
||||
context.set_auto_parallel_context(device_num=device_num, parameter_broadcast=False)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
predict = Tensor(np.ones([batch_size, 128]), dtype=ms.float32)
|
||||
|
@ -183,9 +182,12 @@ def test_allreduce_fusion_parameters():
|
|||
|
||||
|
||||
def test_allreduce_fusion1():
|
||||
_set_has_initializer(False)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
||||
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
||||
allreduce_fusion_dict = train_common(net)
|
||||
expect_dict = {'backbone2.fc8.weight': 2,
|
||||
|
@ -210,6 +212,8 @@ def test_allreduce_fusion2():
|
|||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
||||
cost_model_context.reset_cost_model_context()
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
||||
net = SimpleDMLNet(DenseNet1(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
||||
allreduce_fusion_dict = train_common(net)
|
||||
expect_dict = {}
|
||||
|
@ -221,6 +225,8 @@ def test_allreduce_fusion3():
|
|||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=3)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.3333333)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
||||
net = SimpleDMLNet(DenseNet1(has_bias=True, activation='relu'), DenseNet2(has_bias=False, activation='relu'))
|
||||
allreduce_fusion_dict = train_common(net)
|
||||
expect_dict = {'backbone2.fc8.weight': 3,
|
||||
|
@ -247,6 +253,8 @@ def test_allreduce_fusion4():
|
|||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_algorithm=1)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_times=2)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_tail_percent=0.5)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
||||
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
||||
allreduce_fusion_dict = train_common(net)
|
||||
expect_dict = {'backbone2.fc8.weight': 2,
|
||||
|
@ -276,6 +284,8 @@ def test_allreduce_fusion5():
|
|||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_inherent_time=0.05)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_allreduce_bandwidth=0.000001)
|
||||
cost_model_context.set_cost_model_context(costmodel_allreduce_fusion_computation_time_parameter=0.0000015)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL)
|
||||
net = SimpleDMLNet(DenseNet2(has_bias=False, activation=None), DenseNet2(has_bias=False, activation=None))
|
||||
allreduce_fusion_dict = train_common(net)
|
||||
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common.parameter import Parameter
|
|||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel._utils import _reset_op_id
|
||||
from mindspore.parallel._utils import _reset_op_id, _set_has_initializer
|
||||
from mindspore.train import Model, ParallelMode
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
@ -90,6 +90,7 @@ def all_to_all_common(strategy1):
|
|||
|
||||
|
||||
def test_all_to_all():
|
||||
_set_has_initializer(False)
|
||||
strategy1 = ((8, 1),)
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
|
||||
_reset_op_id()
|
||||
|
|
|
@ -20,6 +20,7 @@ from mindspore import Parameter, Tensor, context
|
|||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
|
@ -60,11 +61,12 @@ def test_matmul_sub():
|
|||
out = self.sub(out, b)
|
||||
return out
|
||||
|
||||
_set_has_initializer(False)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -85,10 +87,10 @@ def test_matmul_add():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -109,10 +111,10 @@ def test_matmul_mul():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -133,10 +135,10 @@ def test_matmul_div():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -157,10 +159,10 @@ def test_matmul_greater():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -181,10 +183,10 @@ def test_matmul_add_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -205,10 +207,10 @@ def test_matmul_add_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
@ -229,10 +231,10 @@ def test_matmul_sub_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -253,10 +255,10 @@ def test_matmul_sub_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
@ -277,10 +279,10 @@ def test_matmul_mul_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -301,10 +303,10 @@ def test_matmul_mul_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
@ -325,10 +327,10 @@ def test_matmul_div_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -349,10 +351,10 @@ def test_matmul_div_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
@ -373,10 +375,10 @@ def test_matmul_greater_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -397,10 +399,10 @@ def test_matmul_greater_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
@ -421,10 +423,10 @@ def test_matmul_floordiv():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (4, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -445,10 +447,10 @@ def test_matmul_floordiv_broadcast():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((4, 2), (2,))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
@ -469,10 +471,10 @@ def test_matmul_floordiv_broadcast2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 4), (4, 1))
|
||||
strategy2 = ((4, 1), (1, 2))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
||||
|
|
|
@ -64,10 +64,10 @@ def test_auto_parallel_bn_with_prelu():
|
|||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
|
||||
x = Tensor(np.random.rand(16, 16, 32, 64), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
|
|
@ -106,8 +106,8 @@ def test_double_subgraphs():
|
|||
cost_model_context.set_cost_model_context(multi_subgraphs=True)
|
||||
context.set_context(save_graphs=True)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
net = TrainStepWarp(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = TrainStepWarp(NetWithLoss(Net()))
|
||||
net.set_auto_parallel()
|
||||
|
||||
x = Tensor(np.ones([8, 8, 8, 8]), dtype=ms.float32)
|
||||
|
|
|
@ -68,9 +68,9 @@ def test_virtual_dataset_3_input():
|
|||
out = self.matmul2(out, b)
|
||||
return out
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
|
|
|
@ -68,11 +68,11 @@ def test_two_bn():
|
|||
out = self.block2(out)
|
||||
return out
|
||||
|
||||
net = NetWithLoss(Net())
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
context.set_context(save_graphs=True)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = NetWithLoss(Net())
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_auto_parallel()
|
||||
set_algo_parameters(elementwise_op_strategy_follow=True)
|
||||
reset_op_id()
|
||||
|
|
|
@ -94,12 +94,12 @@ def test_batch():
|
|||
return out4
|
||||
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((8, 1, 1, 1), (1, 1, 1, 1))
|
||||
strategy2 = ((1, 1, 1, 8), (1, 1, 1, 8))
|
||||
strategy3 = ((4, 1, 1, 2), (4, 1, 1, 2))
|
||||
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
|
||||
x = Tensor(np.ones([128, 16, 34, 34]), dtype=ms.float32)
|
||||
|
|
|
@ -118,6 +118,9 @@ def batchnorm_net(num_classes):
|
|||
|
||||
|
||||
def test_batchnorm_batch_parallel():
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
num_classes = 1001
|
||||
batch_size = 32
|
||||
learning_rate = 0.1
|
||||
|
@ -134,9 +137,6 @@ def test_batchnorm_batch_parallel():
|
|||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
model = Model(net, loss, opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
|
|
@ -198,6 +198,7 @@ def bn_net():
|
|||
|
||||
def bn_common(parallel_mode, train_flag, strategy_loss=None):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
|
||||
learning_rate = 0.1
|
||||
momentum = 0.9
|
||||
epoch_size = 2
|
||||
|
@ -218,7 +219,6 @@ def bn_common(parallel_mode, train_flag, strategy_loss=None):
|
|||
|
||||
if parallel_mode == ParallelMode.DATA_PARALLEL:
|
||||
context.set_auto_parallel_context(parameter_broadcast=True)
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=8)
|
||||
model = Model(net, loss, opt)
|
||||
if train_flag:
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
|
|
@ -88,13 +88,13 @@ def test_get_next_semi_auto_parallel():
|
|||
return x
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
|
||||
strategy3 = ((4, 1), (), ())
|
||||
strategy4 = ((4, 1), (4, 1))
|
||||
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
|
||||
strategy4=strategy4)
|
||||
net = GradWrap(net_with_loss)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
compile_net(net)
|
||||
|
||||
|
||||
|
@ -112,13 +112,13 @@ def test_get_next_semi_auto_parallel1():
|
|||
return x
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
network = Net(strategy1=((1, 4),), strategy2=((4, 1), (1,)))
|
||||
strategy3 = ((1, 4), (), ())
|
||||
strategy4 = ((4, 1), (4, 1))
|
||||
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2, strategy3=strategy3,
|
||||
strategy4=strategy4)
|
||||
net = GradWrap(net_with_loss)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
compile_net(net)
|
||||
|
||||
|
||||
|
@ -136,10 +136,10 @@ def test_get_next_auto_parallel():
|
|||
return x
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
network = Net()
|
||||
net_with_loss = NetWithLoss(network, [ms.float32, ms.int32], [[32, 64], [32]], 2)
|
||||
net = GradWrap(net_with_loss)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
compile_net(net)
|
||||
|
||||
|
||||
|
@ -153,6 +153,6 @@ def test_only_one_get_next():
|
|||
return self.get_next()
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
net = Net()
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net = Net()
|
||||
compile_net(net)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
from mindspore import context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -22,9 +23,7 @@ import mindspore.common.api as me
|
|||
from mindspore.common.initializer import initializer
|
||||
from hccl_test.manage.api import Hccl
|
||||
|
||||
|
||||
def check_initializer_weight_slice(init_name="Uniform"):
|
||||
class Net(nn.Cell):
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, weight):
|
||||
super().__init__()
|
||||
self.weight = Parameter(weight, "w1")
|
||||
|
@ -36,6 +35,7 @@ def check_initializer_weight_slice(init_name="Uniform"):
|
|||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
def check_initializer_weight_slice(init_name="Uniform"):
|
||||
def get_slice(rank):
|
||||
hccl = Hccl()
|
||||
rank_save = hccl.rank_id
|
||||
|
@ -77,5 +77,28 @@ def test_initializer_weight_slice():
|
|||
for init_name in initializers:
|
||||
check_initializer_weight_slice(init_name)
|
||||
|
||||
def test_wrong_order_set_parallel_mode_with_initializer():
|
||||
weight = initializer("Normal", [64, 32], ms.float32)
|
||||
strategy1 = ((2, 1), (4, 1))
|
||||
strategy2 = ((2, 4),)
|
||||
net = Net(strategy1, strategy2, weight)
|
||||
exe = me._executor
|
||||
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
with pytest.raises(RuntimeError):
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
net.set_auto_parallel()
|
||||
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
||||
|
||||
def test_wrong_order_set_parallel_mode_without_initializer():
|
||||
weight = Tensor(np.ones([64, 32]), ms.float32)
|
||||
strategy1 = ((2, 1), (4, 1))
|
||||
strategy2 = ((2, 4),)
|
||||
net = Net(strategy1, strategy2, weight)
|
||||
exe = me._executor
|
||||
x = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
|
||||
net.set_auto_parallel()
|
||||
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_initializer_weight_slice()
|
||||
|
|
|
@ -58,12 +58,12 @@ def test_linear():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=16, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy0 = ((2, 4), (2, 4))
|
||||
strategy1 = ((2, 4), (4,))
|
||||
strategy2 = ((2, 8),)
|
||||
strategy3 = ((16, 1), (16, 1))
|
||||
net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2), strategy3))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
|
|
|
@ -54,6 +54,7 @@ def test_momentum():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
strategy3 = ((4, 1), (4, 1))
|
||||
|
@ -69,7 +70,6 @@ def test_momentum():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
||||
|
@ -88,6 +88,7 @@ def test_momentum_with_loss_scale():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
strategy3 = ((4, 1), (4, 1))
|
||||
|
@ -103,7 +104,6 @@ def test_momentum_with_loss_scale():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
||||
|
@ -122,6 +122,7 @@ def test_momentum_with_dynamic_lr():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
strategy3 = ((4, 1), (4, 1))
|
||||
|
@ -138,7 +139,6 @@ def test_momentum_with_dynamic_lr():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
||||
|
@ -157,6 +157,7 @@ def test_momentum_with_loss_scale_and_dynamic_lr():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
|
@ -174,7 +175,6 @@ def test_momentum_with_loss_scale_and_dynamic_lr():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
||||
|
@ -193,6 +193,7 @@ def test_lars():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
strategy3 = ((4, 1), (4, 1))
|
||||
|
@ -209,6 +210,5 @@ def test_lars():
|
|||
lars_filter=lambda x: 'bn' not in x.name)
|
||||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
|
|
@ -266,11 +266,11 @@ class BNReshapeDenseBNNet(nn.Cell):
|
|||
def test_bn_reshape_dense_bn_train_loss():
|
||||
batch_size = 16
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
input_ = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
|
||||
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
|
||||
_executor.compile(net, input_, label)
|
||||
|
@ -279,12 +279,12 @@ def test_bn_reshape_dense_bn_train_loss():
|
|||
def test_semi_one_hot_net_batch():
|
||||
batch_size = 16
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
input_ = Tensor(np.ones([batch_size * 1, 512]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
|
||||
net = SemiAutoOneHotNet(args=Args(), strategy=StrategyBatch())
|
||||
net = GradWrap(NetWithLoss(net))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
|
||||
_executor.compile(net, input_, label)
|
||||
|
@ -300,10 +300,10 @@ def test_semi_one_hot_net_model():
|
|||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
dataset = Dataset(predict, label, 2, input_num=2)
|
||||
|
||||
net = SemiAutoOneHotNet(args=Args(), strategy=StrategyModel())
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=16)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
net = SemiAutoOneHotNet(args=Args(), strategy=StrategyModel())
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, optimizer=opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
|
|
@ -353,6 +353,8 @@ def test_resnet_operator_batch_parallel():
|
|||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=dev_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
predict = Tensor(np.ones([batch_size, 3, 224, 224]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
|
||||
|
@ -363,9 +365,6 @@ def test_resnet_operator_batch_parallel():
|
|||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
model = Model(net, loss, opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
@ -379,6 +378,8 @@ def test_resnet_model_parallel():
|
|||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=dev_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
predict = Tensor(np.ones([batch_size, 64, 112, 112]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([batch_size]), dtype=ms.int32)
|
||||
|
||||
|
@ -389,9 +390,6 @@ def test_resnet_model_parallel():
|
|||
loss.softmax_cross_entropy.set_strategy(((dev_num, 1), (dev_num, 1)))
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum)
|
||||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=dev_num)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
model = Model(net, loss, opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
|
|
@ -45,6 +45,8 @@ class Net(nn.Cell):
|
|||
|
||||
def test_dense_gen_graph():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.HYBRID_PARALLEL, mirror_mean=True, device_num=8)
|
||||
init()
|
||||
network = Net(512, 128)
|
||||
|
||||
|
@ -53,8 +55,6 @@ def test_dense_gen_graph():
|
|||
learning_rate=0.1,
|
||||
momentum=0.9)
|
||||
network = WithLossCell(network, loss_fn)
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.HYBRID_PARALLEL, mirror_mean=True, device_num=8)
|
||||
network = TrainOneStepCell(network, optimizer)
|
||||
|
||||
predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01)
|
||||
|
|
|
@ -54,6 +54,7 @@ def test_optimizer_clone_weight():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
|
@ -70,7 +71,6 @@ def test_optimizer_clone_weight():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
||||
|
@ -89,6 +89,7 @@ def test_optimizer_clone_weight2():
|
|||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=4, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((2, 1), (2, 1))
|
||||
strategy2 = ((4, 1),)
|
||||
|
@ -105,6 +106,5 @@ def test_optimizer_clone_weight2():
|
|||
net_with_loss = NetWithLoss(net, strategy3)
|
||||
|
||||
train_net = TrainOneStepCell(net_with_loss, optimizer)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(train_net, x, b)
|
||||
|
|
|
@ -320,10 +320,10 @@ def reshape_net2(backbone):
|
|||
batch_size = 16
|
||||
device_num = 16
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
input_ = Tensor(np.ones([batch_size * device_num, 512, 7, 7]).astype(np.float32) * 0.01)
|
||||
|
||||
net = GradWrap(NetWithLoss(backbone))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(net, input_)
|
||||
|
||||
|
@ -530,10 +530,10 @@ def test_bn_reshape_dense_bn_train():
|
|||
batch_size = 16
|
||||
device_num = 16
|
||||
context.set_auto_parallel_context(device_num=device_num, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
input_ = Tensor(np.ones([batch_size, 2, 32, 32]).astype(np.float32) * 0.01)
|
||||
|
||||
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
compile_net(net, input_)
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@ from numpy import allclose
|
|||
import mindspore.common.initializer as init
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Parameter
|
||||
from mindspore.parallel._utils import _set_has_initializer
|
||||
|
||||
parameter_shape = [16, 4]
|
||||
|
||||
|
@ -46,6 +47,7 @@ def test_using_same_seed_for_initializer():
|
|||
np.random.seed(0)
|
||||
net2 = ParameterNet()
|
||||
net2.init_parameters_data()
|
||||
_set_has_initializer(False)
|
||||
for key in net1.parameters_dict():
|
||||
if key not in net2.parameters_dict():
|
||||
assert False
|
||||
|
@ -60,6 +62,7 @@ def test_using_diffserent_seed_for_initializer():
|
|||
np.random.seed(1)
|
||||
net2 = ParameterNet()
|
||||
net2.init_parameters_data()
|
||||
_set_has_initializer(False)
|
||||
for key in net1.parameters_dict():
|
||||
if key not in net2.parameters_dict():
|
||||
assert False
|
||||
|
|
|
@ -62,13 +62,13 @@ def test_virtual_dataset_3_input():
|
|||
out = self.matmul2(out, b)
|
||||
return out
|
||||
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
strategy0 = ((2, 1), (2, 1), (2, 1))
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((2, 2), (2, 2))
|
||||
strategy3 = ((2, 4),)
|
||||
net = GradWrap(NetWithLoss(Net(strategy0, strategy1, strategy2, strategy3)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 2048]), dtype=ms.float32)
|
||||
|
@ -89,10 +89,10 @@ def test_virtualdataset_cell_3_inputs():
|
|||
out = self.matmul2(out, b)
|
||||
return out
|
||||
|
||||
net = GradWrap(VirtualDatasetCellTriple(NetWithLoss(Net(None, None, None))))
|
||||
context.set_context(save_graphs=True)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
net = GradWrap(VirtualDatasetCellTriple(NetWithLoss(Net(None, None, None))))
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 2048]), dtype=ms.float32)
|
||||
|
|
|
@ -146,6 +146,10 @@ def test_compile_model_train_O2():
|
|||
def test_compile_model_train_O2_parallel():
|
||||
dataset_types = (np.float32, np.float32)
|
||||
dataset_shapes = ((16, 16), (16, 16))
|
||||
context.set_auto_parallel_context(
|
||||
global_rank=0, device_num=8,
|
||||
mirror_mean=True, parameter_broadcast=True,
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL)
|
||||
|
||||
dataset = MindDataSet(dataset_types, dataset_shapes)
|
||||
|
||||
|
@ -153,10 +157,6 @@ def test_compile_model_train_O2_parallel():
|
|||
loss = nn.MSELoss()
|
||||
optimizer = nn.Momentum(net.trainable_params(), 0.1, 0.9, 0.00004, 1024.0)
|
||||
|
||||
context.set_auto_parallel_context(
|
||||
global_rank=0, device_num=8,
|
||||
mirror_mean=True, parameter_broadcast=True,
|
||||
parallel_mode=ParallelMode.DATA_PARALLEL)
|
||||
init()
|
||||
|
||||
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics={"acc"}, amp_level="O2")
|
||||
|
|
Loading…
Reference in New Issue