forked from mindspore-Ecosystem/mindspore
fix bugs
This commit is contained in:
parent
e62c116277
commit
3ade82e8f2
|
@ -185,7 +185,7 @@ class MaxPool1d(_PoolNd):
|
|||
Examples:
|
||||
>>> max_pool = nn.MaxPool1d(kernel_size=3, strides=1)
|
||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4]), mindspore.float32)
|
||||
>>> output = pool(x)
|
||||
>>> output = max_pool(x)
|
||||
>>> output.shape
|
||||
(1, 2, 2)
|
||||
"""
|
||||
|
|
|
@ -20,7 +20,6 @@ from ..common import dtype as mstype
|
|||
from ..ops import operations as P
|
||||
from .cell import Cell
|
||||
from .._checkparam import Validator as validator
|
||||
from .._checkparam import Rel
|
||||
|
||||
|
||||
class LearningRateSchedule(Cell):
|
||||
|
@ -246,7 +245,7 @@ class CosineDecayLR(LearningRateSchedule):
|
|||
>>> min_lr = 0.01
|
||||
>>> max_lr = 0.1
|
||||
>>> decay_steps = 4
|
||||
>>> global_step = Tensor(2, mstype.int32)
|
||||
>>> global_steps = Tensor(2, mstype.int32)
|
||||
>>> cosine_decay_lr = CosineDecayLR(min_lr, max_lr, decay_steps)
|
||||
>>> cosine_decay_lr(global_steps)
|
||||
"""
|
||||
|
|
|
@ -543,7 +543,7 @@ class CosineEmbeddingLoss(_Loss):
|
|||
>>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32)
|
||||
>>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([1,-1]), mindspore.int32)
|
||||
>>> cosine_embedding_loss = P.CosineEmbeddingLoss()
|
||||
>>> cosine_embedding_loss = nn.CosineEmbeddingLoss()
|
||||
>>> cosine_embedding_loss(x1, x2, y)
|
||||
[0.0003426671]
|
||||
"""
|
||||
|
|
|
@ -1125,6 +1125,7 @@ class ScalarToArray(PrimitiveWithInfer):
|
|||
>>> op = P.ScalarToArray()
|
||||
>>> data = 1.0
|
||||
>>> output = op(data)
|
||||
1.0
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -1156,6 +1157,7 @@ class ScalarToTensor(PrimitiveWithInfer):
|
|||
>>> op = P.ScalarToTensor()
|
||||
>>> data = 1
|
||||
>>> output = op(data, mindspore.float32)
|
||||
1.0
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -2987,7 +2989,7 @@ class ScatterMul(_ScatterOp):
|
|||
Examples:
|
||||
>>> input_x = Parameter(Tensor(np.array([[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]), mindspore.float32), name="x")
|
||||
>>> indices = Tensor(np.array([0, 1]), mindspore.int32)
|
||||
>>> updates = Tensor(np.ones([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32)
|
||||
>>> updates = Tensor(np.array([[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]), mindspore.float32)
|
||||
>>> scatter_mul = P.ScatterMul()
|
||||
>>> output = scatter_mul(input_x, indices, updates)
|
||||
[[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]]
|
||||
|
@ -3496,7 +3498,7 @@ class BatchToSpaceND(PrimitiveWithInfer):
|
|||
|
||||
This operation will divide batch dimension N into blocks with block_shape, the output tensor's N dimension
|
||||
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
|
||||
dimension and block_shape with given amount to crop from dimension, respectively.B
|
||||
dimension and block_shape with given amount to crop from dimension, respectively.
|
||||
|
||||
Args:
|
||||
block_shape (Union[list(int), tuple(int)]): The block shape of dividing block with all value >= 1.
|
||||
|
|
|
@ -35,6 +35,7 @@ class ScalarCast(PrimitiveWithInfer):
|
|||
Examples:
|
||||
>>> scalar_cast = P.ScalarCast()
|
||||
>>> output = scalar_cast(255.0, mindspore.int32)
|
||||
255
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -495,6 +495,8 @@ class ReduceMax(_Reduce):
|
|||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceMax(keep_dims=True)
|
||||
>>> output = op(input_x, 1)
|
||||
>>> output.shape
|
||||
(3, 1, 5, 6)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -572,6 +574,8 @@ class ReduceProd(_Reduce):
|
|||
>>> input_x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32))
|
||||
>>> op = P.ReduceProd(keep_dims=True)
|
||||
>>> output = op(input_x, 1)
|
||||
>>> output.shape
|
||||
(3, 1, 5, 6)
|
||||
"""
|
||||
|
||||
|
||||
|
@ -730,8 +734,7 @@ class BatchMatMul(MatMul):
|
|||
[[[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]]
|
||||
|
||||
[[3. 3. 3. 3.]]],
|
||||
[[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
|
@ -744,8 +747,7 @@ class BatchMatMul(MatMul):
|
|||
[[[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]]
|
||||
|
||||
[[3. 3. 3. 3.]]],
|
||||
[[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
[[3. 3. 3. 3.]]
|
||||
|
@ -3683,11 +3685,11 @@ class IFMR(PrimitiveWithInfer):
|
|||
The TFMR(Input Feature Map Reconstruction).
|
||||
|
||||
Args:
|
||||
min_percentile (float): Min init percentile.
|
||||
max_percentile (float): Max init percentile.
|
||||
search_range Union[list(float), tuple(float)]: Range of searching.
|
||||
search_step (float): Step size of searching.
|
||||
with_offset (bool): Whether using offset.
|
||||
min_percentile (float): Min init percentile. Default: 0.999999.
|
||||
max_percentile (float): Max init percentile. Default: 0.999999.
|
||||
search_range Union[list(float), tuple(float)]: Range of searching. Default: [0.7, 1.3].
|
||||
search_step (float): Step size of searching. Default: 0.01.
|
||||
with_offset (bool): Whether using offset. Default: True.
|
||||
|
||||
Inputs:
|
||||
- **data** (Tensor) - A Tensor of feature map. With float16 or float32 data type.
|
||||
|
@ -3709,10 +3711,12 @@ class IFMR(PrimitiveWithInfer):
|
|||
>>> ifmr = P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0),
|
||||
search_step=1.0, with_offset=False)
|
||||
>>> output = ifmr(data, data_min, data_max, cumsum)
|
||||
([7.87401572e-03], [0.00000000e+00])
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, min_percentile, max_percentile, search_range, search_step, with_offset):
|
||||
def __init__(self, min_percentile=0.999999, max_percentile=0.999999, search_range=(0.7, 1.3), search_step=0.01,
|
||||
with_offset=True):
|
||||
validator.check_value_type("min_percentile", min_percentile, [float], self.name)
|
||||
validator.check_value_type("max_percentile", max_percentile, [float], self.name)
|
||||
validator.check_value_type("search_range", search_range, [list, tuple], self.name)
|
||||
|
|
|
@ -319,6 +319,8 @@ class ReLU6(PrimitiveWithInfer):
|
|||
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
||||
>>> relu6 = P.ReLU6()
|
||||
>>> result = relu6(input_x)
|
||||
[[0. 4. 0.]
|
||||
[2. 0. 6.]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -352,7 +354,7 @@ class ReLUV2(PrimitiveWithInfer):
|
|||
>>> relu_v2 = P.ReLUV2()
|
||||
>>> output = relu_v2(input_x)
|
||||
([[[[1., 0.], [0., 4.]], [[0., 6.], [7., 0.]]]],
|
||||
[[[[1, 0], [2, 0]], [[2, 0], [1, 0]]]])
|
||||
[[[[[1, 0], [2, 0]], [[2, 0], [1, 0]]]]])
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -892,7 +894,7 @@ class BatchNorm(PrimitiveWithInfer):
|
|||
- **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)
|
||||
>>> input_x = Tensor(np.ones([32, 64]), mindspore.float32)
|
||||
>>> scale = Tensor(np.ones([64]), mindspore.float32)
|
||||
>>> bias = Tensor(np.ones([64]), mindspore.float32)
|
||||
>>> mean = Tensor(np.ones([64]), mindspore.float32)
|
||||
|
@ -2558,7 +2560,11 @@ class ResizeBilinear(PrimitiveWithInfer):
|
|||
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32)
|
||||
>>> resize_bilinear = P.ResizeBilinear((5, 5))
|
||||
>>> result = resize_bilinear(tensor)
|
||||
>>> assert result.shape == (1, 1, 5, 5)
|
||||
[[[[1. 2. 3. 4. 5.]
|
||||
[1. 2. 3. 4. 5.]
|
||||
[1. 2. 3. 4. 5.]
|
||||
[1. 2. 3. 4. 5.]
|
||||
[1. 2. 3. 4. 5.]]]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -45,7 +45,7 @@ class Assign(PrimitiveWithCheck):
|
|||
>>>
|
||||
>>> def construct(self, x):
|
||||
>>> P.Assign()(self.y, x)
|
||||
>>> return x
|
||||
>>> return self.y
|
||||
>>> x = Tensor([2.0], mindspore.float32)
|
||||
>>> net = Net()
|
||||
>>> net(x)
|
||||
|
|
Loading…
Reference in New Issue