Merge pull request !3344 from danishnxt/PR-GPU-Pad
This commit is contained in:
mindspore-ci-bot 2020-07-23 23:02:59 +08:00 committed by Gitee
commit 380db207e8
2 changed files with 152 additions and 0 deletions

View File

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/pad_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
PadGpuFwdKernel, float)
MS_REG_GPU_KERNEL_ONE(Pad, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
PadGpuFwdKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,126 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_
#include <iostream>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/pad_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class PadGpuFwdKernel : public GpuKernel {
public:
PadGpuFwdKernel() : shape_size_(0), temp(0), input_size_(0), output_size_(0), workspace_size_(0) {}
~PadGpuFwdKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input = GetDeviceAddress<T>(inputs, 0);
T *output = GetDeviceAddress<T>(outputs, 0);
size_t size = output_size_ / sizeof(T);
int pad_left = paddings[3][0];
int pad_top = paddings[2][0];
T pad_value = 0.0;
CalPad(size, input, input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], output_shape_[2],
output_shape_[3], pad_top, pad_left, pad_value, output, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
// check number of inputs -> should be 1
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but Pad needs 1 input.";
return false;
}
// check number of output -> should be 1
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but Pad needs 1 output.";
return false;
}
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
shape_size_ = input_shape.size();
// shape adjustement -> from 2d/3d to 4d to standardize
if (shape_size_ == 4) {
} else if (shape_size_ == 3) {
auto it = input_shape.begin();
input_shape.insert(it, 1); // batch padding
shape_size_ = 4;
} else if (shape_size_ == 2) {
auto it = input_shape.begin();
input_shape.insert(it, 2, 1); // channel padding
shape_size_ = 4;
}
paddings = GetValue<std::vector<std::vector<int>>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("paddings"));
// shape adjustement -> from 2d/3d to 4d to standardize
if (paddings.size() == 4) {
} else if (paddings.size() == 3) {
auto it = paddings.begin();
paddings.insert(it, 1, {0, 0}); // batch padding
} else if (paddings.size() == 2) {
auto it = paddings.begin();
paddings.insert(it, 2, {0, 0}); // channel padding
}
input_size_ = 1;
for (size_t i = 0; i < shape_size_; i++) {
input_size_ *= input_shape[i];
input_shape_.push_back(input_shape[i]);
}
input_size_ *= sizeof(T);
output_size_ = 1;
for (size_t i = 0; i < shape_size_; i++) {
temp = input_shape[i] + (paddings[i][0] + paddings[i][1]); // compute new dim size
output_size_ *= temp;
output_shape_.push_back(temp); // correct new dimension size
}
output_size_ *= sizeof(T);
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
}
private:
size_t shape_size_;
size_t temp;
std::vector<std::vector<int>> paddings; // list of paddings (tuple of tuple in python)
std::vector<int> input_shape_; // dims of the input data
std::vector<int> output_shape_; // dims of the output data
// default
size_t input_size_;
size_t output_size_;
size_t workspace_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PAD_GPU_FWD_KERNEL_H_