forked from mindspore-Ecosystem/mindspore
!74 delete longtime python ut
Merge pull request !74 from changzherui/master
This commit is contained in:
commit
37dba2ddcf
|
@ -1,97 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
@File : test_summary.py
|
||||
@Author:
|
||||
@Date : 2019-07-4
|
||||
@Desc : test summary function
|
||||
"""
|
||||
import os
|
||||
import logging
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore.train.summary.summary_record import SummaryRecord, _cache_summary_tensor_data
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
||||
CUR_DIR = os.getcwd()
|
||||
SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
|
||||
|
||||
log = logging.getLogger("test")
|
||||
log.setLevel(level=logging.ERROR)
|
||||
|
||||
def get_now_time_ns():
|
||||
"""get the time of second"""
|
||||
time_second = int(time.time_ns())
|
||||
return time_second
|
||||
|
||||
def get_test_data(step):
|
||||
""" get_test_data """
|
||||
# pylint: disable=unused-argument
|
||||
test_data_list = []
|
||||
tag1 = "xt1[:Tensor]"
|
||||
tag2 = "xt2[:Tensor]"
|
||||
tag3 = "xt3[:Tensor]"
|
||||
np1 = np.random.random((5, 4, 3, 5))
|
||||
np2 = np.random.random((5, 5, 3, 5))
|
||||
np3 = np.random.random((4, 5, 3, 5))
|
||||
|
||||
dict1 = {}
|
||||
dict1["name"] = tag1
|
||||
dict1["data"] = Tensor(np1)
|
||||
|
||||
dict2 = {}
|
||||
dict2["name"] = tag2
|
||||
dict2["data"] = Tensor(np2)
|
||||
|
||||
dict3 = {}
|
||||
dict3["name"] = tag3
|
||||
dict3["data"] = Tensor(np3)
|
||||
|
||||
test_data_list.append(dict1)
|
||||
test_data_list.append(dict2)
|
||||
|
||||
return test_data_list
|
||||
|
||||
|
||||
# Test 1: summary sample of scalar
|
||||
def test_summary_performance():
|
||||
""" test_summary_performance """
|
||||
log.debug("begin test_scalar_summary_sample")
|
||||
current_time = time.time()
|
||||
print("time = ", current_time)
|
||||
# step 0: create the thread
|
||||
test_writer = SummaryRecord(SUMMARY_DIR, flush_time=120)
|
||||
|
||||
# step 1: create the test data for summary
|
||||
old_time = get_now_time_ns()
|
||||
# step 2: create the Event
|
||||
for i in range(1, 10):
|
||||
test_data = get_test_data(i)
|
||||
_cache_summary_tensor_data(test_data)
|
||||
test_writer.record(i)
|
||||
now_time = get_now_time_ns()
|
||||
consume_time = (now_time - old_time)/1000/1000
|
||||
old_time = now_time
|
||||
print("step test_summary_performance conusmer time is:", consume_time)
|
||||
|
||||
|
||||
# step 3: send the event to mq
|
||||
|
||||
# step 4: accept the event and write the file
|
||||
test_writer.flush()
|
||||
test_writer.close()
|
||||
current_time = time.time() - current_time
|
||||
print("consume time = ", current_time)
|
||||
log.debug("finished test_scalar_summary_sample")
|
|
@ -66,6 +66,7 @@ def test_amp_o2():
|
|||
train_network = amp.build_train_network(net, optimizer, level="O2")
|
||||
output = train_network(inputs, label)
|
||||
|
||||
|
||||
def test_amp_o2_loss():
|
||||
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
label = Tensor(np.zeros([16, 16]).astype(np.float32))
|
||||
|
@ -75,14 +76,6 @@ def test_amp_o2_loss():
|
|||
train_network = amp.build_train_network(net, optimizer, loss, level="O2")
|
||||
output = train_network(inputs, label)
|
||||
|
||||
def test_amp_resnet50_loss():
|
||||
inputs = Tensor(np.ones([2, 3, 224, 224]).astype(np.float32))
|
||||
label = Tensor(np.zeros([2, 10]).astype(np.float32))
|
||||
net = resnet50()
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
|
||||
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = amp.build_train_network(net, optimizer, loss, level="O2")
|
||||
train_network(inputs, label)
|
||||
|
||||
def test_amp_o0_loss():
|
||||
inputs = Tensor(np.ones([16, 16]).astype(np.float32))
|
||||
|
|
Loading…
Reference in New Issue