pylint clean

This commit is contained in:
liubuyu 2020-05-20 11:12:14 +08:00
parent 0336525553
commit 37be555a81
21 changed files with 52 additions and 84 deletions

View File

@ -42,7 +42,6 @@ class for_loop_with_break(Cell):
x *= 3
break
x = x * 2
pass
return x
@ -71,9 +70,7 @@ class for_loop_with_cont_break(Cell):
if i > 5:
x *= 3
break
x *= 2
x = x * 2
pass
return x
@ -82,7 +79,7 @@ class for_nested_loop_with_break(Cell):
super().__init__()
def construct(self, x):
for i in range(3):
for _ in range(3):
for j in range(5):
if j > 3:
x *= 2

View File

@ -12,13 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ms_function
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
@ms_function
@ -37,7 +33,7 @@ def test_net():
c3 = Tensor([1], mstype.int32)
expect = Tensor([21], mstype.int32)
ret = t1_while(c1, c2, c3)
assert (ret == expect)
assert ret == expect
if __name__ == "__main__":

View File

@ -17,7 +17,7 @@ import numpy as np
import mindspore.common.dtype as mstype
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ms_function
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_id=5, device_target="Ascend")

View File

@ -16,10 +16,8 @@ import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter, Model, ms_function
from mindspore.common.initializer import initializer
from mindspore import Tensor, Model, ms_function
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
context.set_context(device_target="Ascend")

View File

@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir)
file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir"
file_normal = curr_path + "/mem_reuse_check/normal_mem.ir"
checker = os.path.exists(file_memreuse)
assert (checker, True)
assert checker == True
checker = os.path.exists(file_normal)
assert (checker, True)
assert checker == True
checker = filecmp.cmp(file_memreuse, file_normal)
assert (checker, True)
assert checker == True

View File

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
import os
import random
import argparse
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
@ -31,7 +31,6 @@ from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
random.seed(1)
np.random.seed(1)
@ -143,11 +142,8 @@ if __name__ == '__main__':
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
if args_opt.do_eval:
# if args_opt.checkpoint_path:
# param_dict = load_checkpoint(args_opt.checkpoint_path)
# load_param_into_net(net, param_dict)
eval_dataset = create_dataset(1, training=False)
res = model.eval(eval_dataset)
print("result: ", res)
checker = os.path.exists("./memreuse.ir")
assert (checker, True)
assert checker == True

View File

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
import os
import random
import argparse
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
@ -31,7 +31,6 @@ from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
random.seed(1)
np.random.seed(1)
@ -143,11 +142,8 @@ if __name__ == '__main__':
model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
if args_opt.do_eval:
# if args_opt.checkpoint_path:
# param_dict = load_checkpoint(args_opt.checkpoint_path)
# load_param_into_net(net, param_dict)
eval_dataset = create_dataset(1, training=False)
res = model.eval(eval_dataset)
print("result: ", res)
checker = os.path.exists("./normal_memreuse.ir")
assert (checker, True)
assert checker == True

View File

@ -21,7 +21,7 @@ import pytest
@pytest.mark.env_single
def test_nccl_lenet():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_lenet.py")
assert (return_code == 0)
assert return_code == 0
@pytest.mark.level0
@ -29,7 +29,7 @@ def test_nccl_lenet():
@pytest.mark.env_single
def test_nccl_all_reduce_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_reduce_op.py")
assert (return_code == 0)
assert return_code == 0
@pytest.mark.level0
@ -37,7 +37,7 @@ def test_nccl_all_reduce_op():
@pytest.mark.env_single
def test_nccl_all_gather_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_all_gather_op.py")
assert (return_code == 0)
assert return_code == 0
@pytest.mark.level0
@ -45,4 +45,4 @@ def test_nccl_all_gather_op():
@pytest.mark.env_single
def test_nccl_reduce_scatter_op():
return_code = os.system("mpirun -n 8 pytest -s test_nccl_reduce_scatter_op.py")
assert (return_code == 0)
assert return_code == 0

View File

@ -51,4 +51,4 @@ def test_AllGather():
diff = output.asnumpy() - expect
error = np.ones(shape=expect.shape) * 1.0e-5
assert np.all(diff < error)
assert (output.shape() == expect.shape)
assert output.shape() == expect.shape

View File

@ -19,7 +19,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.communication.management import init, get_group_size
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
@ -94,8 +94,8 @@ def test_lenet_nccl():
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
start = datetime.datetime.now()
for i in range(epoch):
for step in range(mini_batch):
for _ in range(epoch):
for _ in range(mini_batch):
loss = train_network(data, label)
losses.append(loss.asnumpy())
end = datetime.datetime.now()
@ -105,4 +105,4 @@ def test_lenet_nccl():
with open("ms_loss.txt", "w") as fo2:
fo2.write("loss:")
fo2.write(str(losses[-5:]))
assert (losses[-1] < 0.01)
assert losses[-1] < 0.01

View File

@ -54,23 +54,23 @@ def test_ReduceScatter():
reduce_scatter = Net()
output = reduce_scatter()
sum = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
sum_ones = np.ones([size, 1, 3, 3]).astype(np.float32) * 0
for i in range(size):
sum += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
expect0 = sum[rank: rank + 1]
sum_ones += np.ones([size, 1, 3, 3]).astype(np.float32) * 0.01 * (i + 1)
expect0 = sum_ones[rank: rank + 1]
diff0 = output[0].asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert (output[0].shape() == expect0.shape)
assert output[0].shape() == expect0.shape
expect1 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * size
diff1 = output[1].asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert (output[1].shape() == expect1.shape)
assert output[1].shape() == expect1.shape
expect2 = np.ones([1, 1, 3, 3]).astype(np.float32) * 0.01 * 1
diff2 = output[2].asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert (output[2].shape() == expect2.shape)
assert output[2].shape() == expect2.shape

View File

@ -13,7 +13,6 @@
# limitations under the License.
# ============================================================================
import mindspore.nn as nn
from mindspore.nn import Dense
from mindspore.ops import operations as P

View File

@ -15,10 +15,9 @@
"""train bert network without lossscale"""
import numpy as np
import os
import pytest
from numpy import allclose
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
@ -28,7 +27,7 @@ from mindspore import log as logger
from mindspore.common.tensor import Tensor
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
from mindspore.nn.optim import Momentum
from mindspore.train.callback import Callback, LossMonitor
from mindspore.train.callback import Callback
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.model import Model

View File

@ -12,11 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Dense
from mindspore.ops import operations as P

View File

@ -12,10 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import math
import time
import numpy as np
import pytest
import time
import mindspore.nn as nn
from mindspore import context, Tensor, ParameterTuple
@ -152,10 +151,10 @@ def test_ascend_pynative_lenet():
fw_output = net(inputs)
loss_output = criterion(fw_output, labels)
grads = train_network(inputs, labels)
success = optimizer(grads)
optimizer(grads)
end_time = time.time()
cost_time = end_time - start_time
total_time = total_time + cost_time
print("======epoch: ", epoch, " loss: ", loss_output.asnumpy(), " cost time: ", cost_time)
assert (loss_output.asnumpy() < 0.1)
assert loss_output.asnumpy() < 0.1

View File

@ -13,18 +13,15 @@
# limitations under the License.
# ============================================================================
""" test model train """
import numpy as np
import os
import numpy as np
from apply_momentum import ApplyMomentum
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn as wrap
from mindspore import Tensor, Parameter, Model
from mindspore import Tensor, Model
from mindspore.common.api import ms_function
from mindspore.common.initializer import initializer
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.train.summary.summary_record import SummaryRecord

View File

@ -12,12 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import os
import pytest
import random
import shutil
import time
import pytest
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
@ -76,7 +75,7 @@ class SummaryNet(nn.Cell):
return z
def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
def train_summary_record_scalar_for_1(test_writer, steps):
net = SummaryNet()
out_me_dict = {}
for i in range(0, steps):
@ -89,12 +88,9 @@ def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
return out_me_dict
def me_scalar_summary(steps, tag=None, value=None):
def me_scalar_summary(steps):
with SummaryRecord(SUMMARY_DIR_ME_TEMP) as test_writer:
x = Tensor(np.array([1.1]).astype(np.float32))
y = Tensor(np.array([1.2]).astype(np.float32))
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps, x, y)
out_me_dict = train_summary_record_scalar_for_1(test_writer, steps)
return out_me_dict

View File

@ -13,7 +13,7 @@
# limitations under the License.
# ============================================================================
import numpy as np
import os
from resnet_torch import resnet50
from mindspore import Tensor

View File

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import numpy as np
import os
import random
import argparse
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype

View File

@ -13,11 +13,11 @@
# limitations under the License.
# ============================================================================
import numpy as np
import os
import pytest
import random
import time
import pytest
import numpy as np
from resnet import resnet50
import mindspore.common.dtype as mstype
@ -134,7 +134,7 @@ class LossGet(Callback):
return self._loss
def train_process(device_id, epoch_size, num_classes, device_num, batch_size):
def train_process(device_id, epoch_size, num_classes, batch_size):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -181,15 +181,14 @@ def eval(batch_size, num_classes):
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_resnet_cifar_1p():
device_num = 1
epoch_size = 1
num_classes = 10
batch_size = 32
device_id = 0
train_process(device_id, epoch_size, num_classes, device_num, batch_size)
train_process(device_id, epoch_size, num_classes, batch_size)
time.sleep(3)
acc = eval(batch_size, num_classes)
os.chdir("../")
os.system("rm -rf " + str(device_id))
print("End training...")
assert (acc['acc'] > 0.35)
assert acc['acc'] > 0.35

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
import numpy as np
import os
import pytest
import random
import numpy as np
import pytest
from multiprocessing import Process, Queue
from resnet import resnet50
@ -168,7 +168,7 @@ def train_process(q, device_id, epoch_size, num_classes, device_num, batch_size,
dataset = create_dataset(epoch_size, training=True,
batch_size=batch_size, rank_id=device_id, rank_size=device_num,
enable_hccl=enable_hccl)
batch_num = dataset.get_dataset_size()
loss_cb = LossGet()
model.train(epoch_size, dataset, callbacks=[loss_cb])
q.put(loss_cb.get_loss())
@ -207,4 +207,4 @@ def test_resnet_cifar_8p():
for i in range(device_num):
os.system("rm -rf " + str(i))
print("End training...")
assert (loss < 2.0)
assert loss < 2.0