forked from mindspore-Ecosystem/mindspore
added test case to cifar_op
update cifar10 dataset fixing missing error handling code in validator
This commit is contained in:
parent
089623ad19
commit
340d98a4d1
|
@ -271,6 +271,8 @@ def check_sampler_shuffle_shard_options(param_dict):
|
|||
if sampler is not None:
|
||||
if shuffle is not None:
|
||||
raise RuntimeError("sampler and shuffle cannot be specified at the same time.")
|
||||
if num_shards is not None:
|
||||
raise RuntimeError("sampler and sharding cannot be specified at the same time.")
|
||||
|
||||
if num_shards is not None:
|
||||
check_pos_int32(num_shards)
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
{
|
||||
"datasetType": "CIFAR100",
|
||||
"numRows": 100,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"coarse_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
},
|
||||
"fine_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,21 +0,0 @@
|
|||
{
|
||||
"datasetType": "CIFAR100",
|
||||
"numRows": 33,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"coarse_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
},
|
||||
"fine_label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
Binary file not shown.
|
@ -1,9 +0,0 @@
|
|||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "ALL",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 2
|
||||
}
|
||||
|
|
@ -1,9 +0,0 @@
|
|||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "RANDOM",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 1
|
||||
}
|
||||
|
|
@ -1,9 +0,0 @@
|
|||
{
|
||||
"deviceNum" : 3,
|
||||
"deviceId" : 1,
|
||||
"shardConfig" : "UNIQUE",
|
||||
"shuffle" : "ON",
|
||||
"seed" : 0,
|
||||
"epoch" : 3
|
||||
}
|
||||
|
|
@ -1,16 +0,0 @@
|
|||
{
|
||||
"datasetType": "CIFAR10",
|
||||
"numRows": 60000,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,16 +0,0 @@
|
|||
{
|
||||
"datasetType": "CIFAR10",
|
||||
"numRows": 33,
|
||||
"columns": {
|
||||
"image": {
|
||||
"type": "uint8",
|
||||
"rank": 1,
|
||||
"t_impl": "cvmat"
|
||||
},
|
||||
"label" : {
|
||||
"type": "uint32",
|
||||
"rank": 1,
|
||||
"t_impl": "flex"
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,91 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
# Data for CIFAR and MNIST are not part of build tree
|
||||
# They need to be downloaded directly
|
||||
# prep_data.py can be executed or code below
|
||||
# import sys
|
||||
# sys.path.insert(0,"../../data")
|
||||
# import prep_data
|
||||
# prep_data.download_all_for_test("../../data")
|
||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||
DATA_DIR_100 = "../data/dataset/testCifar100Data"
|
||||
|
||||
|
||||
def load_cifar(path):
|
||||
raw = np.empty(0, dtype=np.uint8)
|
||||
for file_name in os.listdir(path):
|
||||
if file_name.endswith(".bin"):
|
||||
with open(os.path.join(path, file_name), mode='rb') as file:
|
||||
raw = np.append(raw, np.fromfile(file, dtype=np.uint8), axis=0)
|
||||
raw = raw.reshape(-1, 3073)
|
||||
labels = raw[:, 0]
|
||||
images = raw[:, 1:]
|
||||
images = images.reshape(-1, 3, 32, 32)
|
||||
images = images.transpose(0, 2, 3, 1)
|
||||
return images, labels
|
||||
|
||||
|
||||
def test_case_dataset_cifar10():
|
||||
"""
|
||||
dataset parameter
|
||||
"""
|
||||
logger.info("Test dataset parameter")
|
||||
# apply dataset operations
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100)
|
||||
|
||||
num_iter = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_case_dataset_cifar100():
|
||||
"""
|
||||
dataset parameter
|
||||
"""
|
||||
logger.info("Test dataset parameter")
|
||||
# apply dataset operations
|
||||
data1 = ds.Cifar100Dataset(DATA_DIR_100, 100)
|
||||
|
||||
num_iter = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_reading_cifar10():
|
||||
"""
|
||||
Validate CIFAR10 image readings
|
||||
"""
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100, shuffle=False)
|
||||
images, labels = load_cifar(DATA_DIR_10)
|
||||
for i, d in enumerate(data1.create_dict_iterator()):
|
||||
np.testing.assert_array_equal(d["image"], images[i])
|
||||
np.testing.assert_array_equal(d["label"], labels[i])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_case_dataset_cifar10()
|
||||
test_case_dataset_cifar100()
|
||||
test_reading_cifar10()
|
|
@ -245,17 +245,17 @@ def test_deterministic_run_distribution():
|
|||
|
||||
# First dataset
|
||||
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
random_crop_op = c_vision.RandomHorizontalFlip(0.1)
|
||||
random_horizontal_flip_op = c_vision.RandomHorizontalFlip(0.1)
|
||||
decode_op = c_vision.Decode()
|
||||
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
|
||||
data1 = data1.map(input_columns=["image"], operations=random_horizontal_flip_op)
|
||||
|
||||
# Second dataset
|
||||
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
||||
data2 = data2.map(input_columns=["image"], operations=decode_op)
|
||||
# If seed is set up on constructor, so the two ops output deterministic sequence
|
||||
random_crop_op2 = c_vision.RandomHorizontalFlip(0.1)
|
||||
data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
|
||||
random_horizontal_flip_op2 = c_vision.RandomHorizontalFlip(0.1)
|
||||
data2 = data2.map(input_columns=["image"], operations=random_horizontal_flip_op2)
|
||||
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
np.testing.assert_equal(item1["image"], item2["image"])
|
||||
|
|
|
@ -0,0 +1,387 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Test Cifar10 and Cifar100 dataset operators
|
||||
"""
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||
DATA_DIR_100 = "../data/dataset/testCifar100Data"
|
||||
|
||||
|
||||
def load_cifar(path, kind="cifar10"):
|
||||
"""
|
||||
load Cifar10/100 data
|
||||
"""
|
||||
raw = np.empty(0, dtype=np.uint8)
|
||||
for file_name in os.listdir(path):
|
||||
if file_name.endswith(".bin"):
|
||||
with open(os.path.join(path, file_name), mode='rb') as file:
|
||||
raw = np.append(raw, np.fromfile(file, dtype=np.uint8), axis=0)
|
||||
if kind == "cifar10":
|
||||
raw = raw.reshape(-1, 3073)
|
||||
labels = raw[:, 0]
|
||||
images = raw[:, 1:]
|
||||
elif kind == "cifar100":
|
||||
raw = raw.reshape(-1, 3074)
|
||||
labels = raw[:, :2]
|
||||
images = raw[:, 2:]
|
||||
else:
|
||||
raise ValueError("Invalid parameter value")
|
||||
images = images.reshape(-1, 3, 32, 32)
|
||||
images = images.transpose(0, 2, 3, 1)
|
||||
return images, labels
|
||||
|
||||
|
||||
def visualize_dataset(images, labels):
|
||||
"""
|
||||
Helper function to visualize the dataset samples
|
||||
"""
|
||||
num_samples = len(images)
|
||||
for i in range(num_samples):
|
||||
plt.subplot(1, num_samples, i + 1)
|
||||
plt.imshow(images[i])
|
||||
plt.title(labels[i])
|
||||
plt.show()
|
||||
|
||||
|
||||
### Testcases for Cifar10Dataset Op ###
|
||||
|
||||
|
||||
def test_cifar10_content_check():
|
||||
"""
|
||||
Validate Cifar10Dataset image readings
|
||||
"""
|
||||
logger.info("Test Cifar10Dataset Op with content check")
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100, shuffle=False)
|
||||
images, labels = load_cifar(DATA_DIR_10)
|
||||
num_iter = 0
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
for i, d in enumerate(data1.create_dict_iterator()):
|
||||
np.testing.assert_array_equal(d["image"], images[i])
|
||||
np.testing.assert_array_equal(d["label"], labels[i])
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_cifar10_basic():
|
||||
"""
|
||||
Validate CIFAR10
|
||||
"""
|
||||
logger.info("Test Cifar10Dataset Op")
|
||||
|
||||
# case 1: test num_samples
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100)
|
||||
num_iter1 = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
num_iter1 += 1
|
||||
assert num_iter1 == 100
|
||||
|
||||
# case 2: test num_parallel_workers
|
||||
data2 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=50, num_parallel_workers=1)
|
||||
num_iter2 = 0
|
||||
for _ in data2.create_dict_iterator():
|
||||
num_iter2 += 1
|
||||
assert num_iter2 == 50
|
||||
|
||||
# case 3: test repeat
|
||||
data3 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100)
|
||||
data3 = data3.repeat(3)
|
||||
num_iter3 = 0
|
||||
for _ in data3.create_dict_iterator():
|
||||
num_iter3 += 1
|
||||
assert num_iter3 == 300
|
||||
|
||||
# case 4: test batch with drop_remainder=False
|
||||
data4 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100)
|
||||
assert data4.get_dataset_size() == 100
|
||||
assert data4.get_batch_size() == 1
|
||||
data4 = data4.batch(batch_size=7) # drop_remainder is default to be False
|
||||
assert data4.get_dataset_size() == 15
|
||||
assert data4.get_batch_size() == 7
|
||||
num_iter4 = 0
|
||||
for _ in data4.create_dict_iterator():
|
||||
num_iter4 += 1
|
||||
assert num_iter4 == 15
|
||||
|
||||
# case 5: test batch with drop_remainder=True
|
||||
data5 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100)
|
||||
assert data5.get_dataset_size() == 100
|
||||
assert data5.get_batch_size() == 1
|
||||
data5 = data5.batch(batch_size=7, drop_remainder=True) # the rest of incomplete batch will be dropped
|
||||
assert data5.get_dataset_size() == 14
|
||||
assert data5.get_batch_size() == 7
|
||||
num_iter5 = 0
|
||||
for _ in data5.create_dict_iterator():
|
||||
num_iter5 += 1
|
||||
assert num_iter5 == 14
|
||||
|
||||
|
||||
def test_cifar10_pk_sampler():
|
||||
"""
|
||||
Test Cifar10Dataset with PKSampler
|
||||
"""
|
||||
logger.info("Test Cifar10Dataset Op with PKSampler")
|
||||
golden = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4,
|
||||
5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
|
||||
sampler = ds.PKSampler(3)
|
||||
data = ds.Cifar10Dataset(DATA_DIR_10, sampler=sampler)
|
||||
num_iter = 0
|
||||
label_list = []
|
||||
for item in data.create_dict_iterator():
|
||||
label_list.append(item["label"])
|
||||
num_iter += 1
|
||||
np.testing.assert_array_equal(golden, label_list)
|
||||
assert num_iter == 30
|
||||
|
||||
|
||||
def test_cifar10_sequential_sampler():
|
||||
"""
|
||||
Test Cifar10Dataset with SequentialSampler
|
||||
"""
|
||||
logger.info("Test Cifar10Dataset Op with SequentialSampler")
|
||||
num_samples = 30
|
||||
sampler = ds.SequentialSampler(num_samples=num_samples)
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, sampler=sampler)
|
||||
data2 = ds.Cifar10Dataset(DATA_DIR_10, shuffle=False, num_samples=num_samples)
|
||||
num_iter = 0
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
np.testing.assert_equal(item1["label"], item2["label"])
|
||||
num_iter += 1
|
||||
assert num_iter == num_samples
|
||||
|
||||
|
||||
def test_cifar10_exception():
|
||||
"""
|
||||
Test error cases for Cifar10Dataset
|
||||
"""
|
||||
logger.info("Test error cases for Cifar10Dataset")
|
||||
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_1):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, shuffle=False, sampler=ds.PKSampler(3))
|
||||
|
||||
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_2):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
||||
|
||||
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
||||
with pytest.raises(RuntimeError, match=error_msg_3):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, num_shards=10)
|
||||
|
||||
error_msg_4 = "shard_id is specified but num_shards is not"
|
||||
with pytest.raises(RuntimeError, match=error_msg_4):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, shard_id=0)
|
||||
|
||||
error_msg_5 = "Input shard_id is not within the required interval"
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, num_shards=2, shard_id=-1)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, num_shards=2, shard_id=5)
|
||||
|
||||
error_msg_6 = "num_parallel_workers exceeds"
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, shuffle=False, num_parallel_workers=0)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.Cifar10Dataset(DATA_DIR_10, shuffle=False, num_parallel_workers=88)
|
||||
|
||||
|
||||
def test_cifar10_visualize(plot=False):
|
||||
"""
|
||||
Visualize Cifar10Dataset results
|
||||
"""
|
||||
logger.info("Test Cifar10Dataset visualization")
|
||||
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=10, shuffle=False)
|
||||
num_iter = 0
|
||||
image_list, label_list = [], []
|
||||
for item in data1.create_dict_iterator():
|
||||
image = item["image"]
|
||||
label = item["label"]
|
||||
image_list.append(image)
|
||||
label_list.append("label {}".format(label))
|
||||
assert isinstance(image, np.ndarray)
|
||||
assert image.shape == (32, 32, 3)
|
||||
assert image.dtype == np.uint8
|
||||
assert label.dtype == np.uint32
|
||||
num_iter += 1
|
||||
assert num_iter == 10
|
||||
if plot:
|
||||
visualize_dataset(image_list, label_list)
|
||||
|
||||
|
||||
### Testcases for Cifar100Dataset Op ###
|
||||
|
||||
def test_cifar100_content_check():
|
||||
"""
|
||||
Validate Cifar100Dataset image readings
|
||||
"""
|
||||
logger.info("Test Cifar100Dataset with content check")
|
||||
data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100, shuffle=False)
|
||||
images, labels = load_cifar(DATA_DIR_100, kind="cifar100")
|
||||
num_iter = 0
|
||||
# in this example, each dictionary has keys "image", "coarse_label" and "fine_image"
|
||||
for i, d in enumerate(data1.create_dict_iterator()):
|
||||
np.testing.assert_array_equal(d["image"], images[i])
|
||||
np.testing.assert_array_equal(d["coarse_label"], labels[i][0])
|
||||
np.testing.assert_array_equal(d["fine_label"], labels[i][1])
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_cifar100_basic():
|
||||
"""
|
||||
Test Cifar100Dataset
|
||||
"""
|
||||
logger.info("Test Cifar100Dataset")
|
||||
|
||||
# case 1: test num_samples
|
||||
data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100)
|
||||
num_iter1 = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
num_iter1 += 1
|
||||
assert num_iter1 == 100
|
||||
|
||||
# case 2: test repeat
|
||||
data1 = data1.repeat(2)
|
||||
num_iter2 = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
num_iter2 += 1
|
||||
assert num_iter2 == 200
|
||||
|
||||
# case 3: test num_parallel_workers
|
||||
data2 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100, num_parallel_workers=1)
|
||||
num_iter3 = 0
|
||||
for _ in data2.create_dict_iterator():
|
||||
num_iter3 += 1
|
||||
assert num_iter3 == 100
|
||||
|
||||
# case 4: test batch with drop_remainder=False
|
||||
data3 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100)
|
||||
assert data3.get_dataset_size() == 100
|
||||
assert data3.get_batch_size() == 1
|
||||
data3 = data3.batch(batch_size=3)
|
||||
assert data3.get_dataset_size() == 34
|
||||
assert data3.get_batch_size() == 3
|
||||
num_iter4 = 0
|
||||
for _ in data3.create_dict_iterator():
|
||||
num_iter4 += 1
|
||||
assert num_iter4 == 34
|
||||
|
||||
# case 4: test batch with drop_remainder=True
|
||||
data4 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=100)
|
||||
data4 = data4.batch(batch_size=3, drop_remainder=True)
|
||||
assert data4.get_dataset_size() == 33
|
||||
assert data4.get_batch_size() == 3
|
||||
num_iter5 = 0
|
||||
for _ in data4.create_dict_iterator():
|
||||
num_iter5 += 1
|
||||
assert num_iter5 == 33
|
||||
|
||||
|
||||
def test_cifar100_pk_sampler():
|
||||
"""
|
||||
Test Cifar100Dataset with PKSampler
|
||||
"""
|
||||
logger.info("Test Cifar100Dataset with PKSampler")
|
||||
golden = [i for i in range(20)]
|
||||
sampler = ds.PKSampler(1)
|
||||
data = ds.Cifar100Dataset(DATA_DIR_100, sampler=sampler)
|
||||
num_iter = 0
|
||||
label_list = []
|
||||
for item in data.create_dict_iterator():
|
||||
label_list.append(item["coarse_label"])
|
||||
num_iter += 1
|
||||
np.testing.assert_array_equal(golden, label_list)
|
||||
assert num_iter == 20
|
||||
|
||||
|
||||
def test_cifar100_exception():
|
||||
"""
|
||||
Test error cases for Cifar100Dataset
|
||||
"""
|
||||
logger.info("Test error cases for Cifar100Dataset")
|
||||
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_1):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, sampler=ds.PKSampler(3))
|
||||
|
||||
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_2):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
||||
|
||||
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
||||
with pytest.raises(RuntimeError, match=error_msg_3):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, num_shards=10)
|
||||
|
||||
error_msg_4 = "shard_id is specified but num_shards is not"
|
||||
with pytest.raises(RuntimeError, match=error_msg_4):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, shard_id=0)
|
||||
|
||||
error_msg_5 = "Input shard_id is not within the required interval"
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, num_shards=2, shard_id=-1)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.Cifar10Dataset(DATA_DIR_100, num_shards=2, shard_id=5)
|
||||
|
||||
error_msg_6 = "num_parallel_workers exceeds"
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, num_parallel_workers=0)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.Cifar100Dataset(DATA_DIR_100, shuffle=False, num_parallel_workers=88)
|
||||
|
||||
|
||||
def test_cifar100_visualize(plot=False):
|
||||
"""
|
||||
Visualize Cifar100Dataset results
|
||||
"""
|
||||
logger.info("Test Cifar100Dataset visualization")
|
||||
|
||||
data1 = ds.Cifar100Dataset(DATA_DIR_100, num_samples=10, shuffle=False)
|
||||
num_iter = 0
|
||||
image_list, label_list = [], []
|
||||
for item in data1.create_dict_iterator():
|
||||
image = item["image"]
|
||||
coarse_label = item["coarse_label"]
|
||||
fine_label = item["fine_label"]
|
||||
image_list.append(image)
|
||||
label_list.append("coarse_label {}\nfine_label {}".format(coarse_label, fine_label))
|
||||
assert isinstance(image, np.ndarray)
|
||||
assert image.shape == (32, 32, 3)
|
||||
assert image.dtype == np.uint8
|
||||
assert coarse_label.dtype == np.uint32
|
||||
assert fine_label.dtype == np.uint32
|
||||
num_iter += 1
|
||||
assert num_iter == 10
|
||||
if plot:
|
||||
visualize_dataset(image_list, label_list)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cifar10_content_check()
|
||||
test_cifar10_basic()
|
||||
test_cifar10_pk_sampler()
|
||||
test_cifar10_sequential_sampler()
|
||||
test_cifar10_exception()
|
||||
test_cifar10_visualize(plot=False)
|
||||
|
||||
test_cifar100_content_check()
|
||||
test_cifar100_basic()
|
||||
test_cifar100_pk_sampler()
|
||||
test_cifar100_exception()
|
||||
test_cifar100_visualize(plot=False)
|
Loading…
Reference in New Issue