add bert_thor hub file

This commit is contained in:
wangmin 2020-09-21 11:08:56 +08:00
parent f226789f82
commit 3120e51e7c
3 changed files with 84 additions and 8 deletions

View File

@ -0,0 +1,21 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""hub config."""
from src.resnet_thor import resnet50
def create_network(name, *args, **kwargs):
if name == 'resnet50_thor':
return resnet50(*args, **kwargs)
raise NotImplementedError(f"{name} is not implemented in the repo")

View File

@ -273,7 +273,8 @@ class ResNet(nn.Cell):
damping,
loss_scale,
frequency,
batch_size):
batch_size,
include_top=True):
super(ResNet, self).__init__()
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
@ -321,11 +322,12 @@ class ResNet(nn.Cell):
loss_scale=loss_scale,
frequency=frequency,
batch_size=batch_size)
self.mean = P.ReduceMean(keep_dims=True)
self.flatten = nn.Flatten()
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale,
frequency=frequency, batch_size=batch_size)
self.include_top = include_top
if self.include_top:
self.mean = P.ReduceMean(keep_dims=True)
self.flatten = nn.Flatten()
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale,
frequency=frequency, batch_size=batch_size)
def _make_layer(self, block, layer_num, in_channel, out_channel, stride,
damping, loss_scale, frequency, batch_size):
@ -371,6 +373,9 @@ class ResNet(nn.Cell):
c4 = self.layer3(c3)
c5 = self.layer4(c4)
if not self.include_top:
return x
out = self.mean(c5, (2, 3))
out = self.flatten(out)
out = self.end_point(out)
@ -378,7 +383,7 @@ class ResNet(nn.Cell):
return out
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size=32):
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size=32, include_top=True):
"""
Get ResNet50 neural network.
@ -400,4 +405,5 @@ def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size
damping,
loss_scale,
frequency,
batch_size)
batch_size,
include_top)

View File

@ -0,0 +1,49 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
'''
Bert hub interface for bert_thor
'''
from src.bert_model import BertModel
from src.bert_model import BertConfig
import mindspore.common.dtype as mstype
bert_net_cfg = BertConfig(
batch_size=12,
seq_length=512,
vocab_size=30522,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
use_relative_positions=False,
input_mask_from_dataset=True,
token_type_ids_from_dataset=True,
dtype=mstype.float32,
compute_type=mstype.float16,
enable_fused_layernorm=True
)
def create_network(name, *args, **kwargs):
'''
Create bert network for bert_thor.
'''
if name == 'bert_thor':
is_training = kwargs.get("is_training", default=False)
return BertModel(bert_net_cfg, is_training, *args)
raise NotImplementedError(f"{name} is not implemented in the repo")