forked from mindspore-Ecosystem/mindspore
add bert_thor hub file
This commit is contained in:
parent
f226789f82
commit
3120e51e7c
|
@ -0,0 +1,21 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""hub config."""
|
||||
from src.resnet_thor import resnet50
|
||||
|
||||
def create_network(name, *args, **kwargs):
|
||||
if name == 'resnet50_thor':
|
||||
return resnet50(*args, **kwargs)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
|
@ -273,7 +273,8 @@ class ResNet(nn.Cell):
|
|||
damping,
|
||||
loss_scale,
|
||||
frequency,
|
||||
batch_size):
|
||||
batch_size,
|
||||
include_top=True):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
||||
|
@ -321,11 +322,12 @@ class ResNet(nn.Cell):
|
|||
loss_scale=loss_scale,
|
||||
frequency=frequency,
|
||||
batch_size=batch_size)
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency, batch_size=batch_size)
|
||||
self.include_top = include_top
|
||||
if self.include_top:
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes, damping=damping, loss_scale=loss_scale,
|
||||
frequency=frequency, batch_size=batch_size)
|
||||
|
||||
def _make_layer(self, block, layer_num, in_channel, out_channel, stride,
|
||||
damping, loss_scale, frequency, batch_size):
|
||||
|
@ -371,6 +373,9 @@ class ResNet(nn.Cell):
|
|||
c4 = self.layer3(c3)
|
||||
c5 = self.layer4(c4)
|
||||
|
||||
if not self.include_top:
|
||||
return x
|
||||
|
||||
out = self.mean(c5, (2, 3))
|
||||
out = self.flatten(out)
|
||||
out = self.end_point(out)
|
||||
|
@ -378,7 +383,7 @@ class ResNet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size=32):
|
||||
def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size=32, include_top=True):
|
||||
"""
|
||||
Get ResNet50 neural network.
|
||||
|
||||
|
@ -400,4 +405,5 @@ def resnet50(class_num=10, damping=0.03, loss_scale=1, frequency=278, batch_size
|
|||
damping,
|
||||
loss_scale,
|
||||
frequency,
|
||||
batch_size)
|
||||
batch_size,
|
||||
include_top)
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
'''
|
||||
Bert hub interface for bert_thor
|
||||
'''
|
||||
from src.bert_model import BertModel
|
||||
from src.bert_model import BertConfig
|
||||
import mindspore.common.dtype as mstype
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=12,
|
||||
seq_length=512,
|
||||
vocab_size=30522,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=24,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=False,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16,
|
||||
enable_fused_layernorm=True
|
||||
)
|
||||
def create_network(name, *args, **kwargs):
|
||||
'''
|
||||
Create bert network for bert_thor.
|
||||
'''
|
||||
if name == 'bert_thor':
|
||||
is_training = kwargs.get("is_training", default=False)
|
||||
return BertModel(bert_net_cfg, is_training, *args)
|
||||
raise NotImplementedError(f"{name} is not implemented in the repo")
|
Loading…
Reference in New Issue