set auto parallel for dataset warp cell

This commit is contained in:
yangzhenzhang 2020-05-27 11:52:08 +08:00
parent 45484c690c
commit 2f8516e5d7
2 changed files with 114 additions and 0 deletions

View File

@ -237,6 +237,9 @@ class Model:
network.set_train(is_train)
network.phase = phase
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
network.set_auto_parallel()
return dataset_helper, network
def init(self, train_dataset=None, valid_dataset=None):

View File

@ -0,0 +1,111 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore import context
from mindspore.common import dtype as mstype
from mindspore.nn.optim import Momentum
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from ....dataset_mock import MindData
context.set_context(mode=context.GRAPH_MODE)
class MindDataSet(MindData):
def __init__(self, dataset_types, dataset_shapes):
super(MindDataSet, self).__init__(size=2, batch_size=32,
np_types=dataset_types,
output_shapes=dataset_shapes,
input_indexs=(0, 1))
def __next__(self):
if self._size < self._iter_num:
raise StopIteration
self._iter_num += 1
next = []
for shape, type in zip(self._output_shapes, self._np_types):
next.append(Tensor(np.ones(shape).astype(type)))
return tuple(next)
class Net(nn.Cell):
def __init__(self, in_features, out_features):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
self.matmul = P.MatMul()
self.add = P.TensorAdd()
def construct(self, input):
output = self.add(self.matmul(input, self.weight), self.bias)
return output
class NetFP16(nn.Cell):
def __init__(self, in_features, out_features):
super(NetFP16, self).__init__()
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([out_features]).astype(np.float32)), name="bias")
self.matmul = P.MatMul()
self.add = P.TensorAdd()
self.cast = P.Cast()
def construct(self, input):
output = self.cast(
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)),
self.cast(self.bias, mstype.float16)), mstype.float32)
return output
def get_axis(x):
shape_op = P.Shape()
shape = shape_op(x)
length = F.tuple_len(shape)
perm = F.make_range(0, length)
return perm
class MSELoss(nn.Cell):
def __init__(self):
super(MSELoss, self).__init__()
self.reduce_sum = P.ReduceSum()
self.square = P.Square()
self.reduce_mean = P.ReduceMean()
def construct(self, data, label):
diff = data - label
return self.reduce_mean(self.square(diff), get_axis(diff))
def test_auto_parallel_flag():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=1)
dataset_types = (np.float32, np.float32)
dataset_shapes = ((16, 16), (16, 16))
dataset = MindDataSet(dataset_types, dataset_shapes)
net = NetFP16(16, 16)
net.set_train()
scale_manager = FixedLossScaleManager()
loss = MSELoss()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics=None, loss_scale_manager=scale_manager)
model.train(2, dataset)
assert(model._train_network.get_flags()["auto_parallel"] == True)
context.reset_auto_parallel_context()