diff --git a/mindspore/lite/java/native/runtime/ms_tensor.cpp b/mindspore/lite/java/native/runtime/ms_tensor.cpp index 3a42f810a1b..6117d791bf3 100644 --- a/mindspore/lite/java/native/runtime/ms_tensor.cpp +++ b/mindspore/lite/java/native/runtime/ms_tensor.cpp @@ -227,7 +227,7 @@ extern "C" JNIEXPORT jboolean JNICALL Java_com_mindspore_lite_MSTensor_setByteBu jobject buffer) { jbyte *p_data = reinterpret_cast(env->GetDirectBufferAddress(buffer)); // get buffer poiter jlong data_len = env->GetDirectBufferCapacity(buffer); // get buffer capacity - if (!p_data) { + if (p_data == nullptr) { MS_LOGE("GetDirectBufferAddress return null"); return NULL; } diff --git a/mindspore/lite/tools/converter/parser/tflite/tflite_util.cc b/mindspore/lite/tools/converter/parser/tflite/tflite_util.cc index d987b6e8f97..12f187cbbf1 100644 --- a/mindspore/lite/tools/converter/parser/tflite/tflite_util.cc +++ b/mindspore/lite/tools/converter/parser/tflite/tflite_util.cc @@ -126,14 +126,10 @@ std::map tfMsActivationF }; std::map type_map = { - {tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64}, - {tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32}, - {tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16}, - {tflite::TensorType_INT32, TypeId::kNumberTypeInt32}, - {tflite::TensorType_INT16, TypeId::kNumberTypeInt16}, - {tflite::TensorType_INT8, TypeId::kNumberTypeInt8}, - {tflite::TensorType_INT64, TypeId::kNumberTypeInt64}, - {tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8}, + {tflite::TensorType_FLOAT64, TypeId::kNumberTypeFloat64}, {tflite::TensorType_FLOAT32, TypeId::kNumberTypeFloat32}, + {tflite::TensorType_FLOAT16, TypeId::kNumberTypeFloat16}, {tflite::TensorType_INT32, TypeId::kNumberTypeInt32}, + {tflite::TensorType_INT16, TypeId::kNumberTypeInt16}, {tflite::TensorType_INT8, TypeId::kNumberTypeInt8}, + {tflite::TensorType_INT64, TypeId::kNumberTypeInt64}, {tflite::TensorType_UINT8, TypeId::kNumberTypeUInt8}, {tflite::TensorType_BOOL, TypeId::kNumberTypeBool}, }; @@ -190,11 +186,8 @@ size_t GetDataTypeSize(const TypeId &data_type) { } } -STATUS getPaddingParam(const std::unique_ptr &tensor, - schema::PadMode pad_mode, - int strideH, int strideW, - int windowH, int windowW, - std::vector *params) { +STATUS getPaddingParam(const std::unique_ptr &tensor, schema::PadMode pad_mode, int strideH, + int strideW, int windowH, int windowW, std::vector *params) { if (tensor == nullptr) { MS_LOG(ERROR) << "the input tensor is null"; return RET_ERROR; @@ -208,12 +201,18 @@ STATUS getPaddingParam(const std::unique_ptr &tensor, auto shape = tensor->shape; int H_input = shape.at(1); int W_input = shape.at(2); - + if (strideH == 0) { + MS_LOG(ERROR) << "strideH is zero"; + return RET_ERROR; + } int H_output = ceil(H_input * 1.0 / strideH); int pad_needed_H = (H_output - 1) * strideH + windowH - H_input; padUp = floor(pad_needed_H / 2.0); padDown = pad_needed_H - padUp; - + if (strideW == 0) { + MS_LOG(ERROR) << "strideW is zero"; + return RET_ERROR; + } int W_output = ceil(W_input * 1.0 / strideW); int pad_needed_W = (W_output - 1) * strideW + windowW - W_input; padLeft = floor(pad_needed_W / 2.0); @@ -227,9 +226,7 @@ STATUS getPaddingParam(const std::unique_ptr &tensor, return RET_OK; } -void Split(const std::string &src_str, - std::vector *dst_str, - const std::string &chr) { +void Split(const std::string &src_str, std::vector *dst_str, const std::string &chr) { std::string ::size_type p1 = 0, p2 = src_str.find(chr); while (std::string::npos != p2) { dst_str->push_back(src_str.substr(p1, p2 - p1));