Add test cases for uniform ops on GPU

This commit is contained in:
peixu_ren 2020-08-19 17:07:14 -04:00
parent adbb75556d
commit 2d5d44ab22
5 changed files with 61 additions and 38 deletions

View File

@ -41,15 +41,3 @@ def test_net_1D():
tminval, tmaxval = Tensor(minval, mstype.int32), Tensor(maxval, mstype.int32)
output = net(tminval, tmaxval)
assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 2, 1)
minval = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32)
maxval = np.array([10]).astype(np.int32)
net = Net(shape, seed)
tminval, tmaxval = Tensor(minval), Tensor(maxval)
output = net(tminval, tmaxval)
print(output.asnumpy())
assert output.shape == (3, 2, 2)

View File

@ -36,15 +36,3 @@ def test_net():
net = Net(shape, seed=seed)
output = net()
assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 2, 1)
a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.float32)
b = np.array([10]).astype(np.float32)
net = Net(shape, seed)
ta, tb = Tensor(a), Tensor(b)
output = net(ta, tb)
print(output.asnumpy())
assert output.shape == (3, 2, 2)

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore.ops import operations as P
@ -31,7 +32,9 @@ class Net(nn.Cell):
def construct(self):
return self.stdnormal(self.shape)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net():
seed = 10
seed2 = 10

View File

@ -0,0 +1,46 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class Net(nn.Cell):
def __init__(self, shape, seed=0, seed2=0):
super(Net, self).__init__()
self.uniformint = P.UniformInt(seed=seed)
self.shape = shape
def construct(self, a, b):
return self.uniformint(self.shape, a, b)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net_1D():
seed = 10
shape = (3, 2, 4)
a = 1
b = 5
net = Net(shape, seed=seed)
ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32)
output = net(ta, tb)
assert output.shape == (3, 2, 4)

View File

@ -12,32 +12,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class Net(nn.Cell):
def __init__(self, shape, seed=0):
def __init__(self, shape, seed=0, seed2=0):
super(Net, self).__init__()
self.uniformreal = P.UniformReal(seed=seed)
self.shape = shape
def construct(self, minval, maxval):
return self.uniformreal(self.shape, minval, maxval)
def construct(self):
return self.uniformreal(self.shape)
def test_net_1D():
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net():
seed = 10
shape = (3, 2, 4)
minval = 0.0
maxval = 1.0
net = Net(shape, seed)
tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32)
output = net(tminval, tmaxval)
print(output.asnumpy())
net = Net(shape, seed=seed)
output = net()
assert output.shape == (3, 2, 4)