forked from mindspore-Ecosystem/mindspore
!26718 [ME][Fallback] Add some fallback numpy test cases
Merge pull request !26718 from Margaret_wangrui/fallback
This commit is contained in:
commit
2cc51099b1
|
@ -0,0 +1,179 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test graph fallback """
|
||||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import ms_function, context, Tensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_linspace():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with linspace in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_linspace():
|
||||
a = Tensor(np.linspace(1, 10, 10))
|
||||
b = Tensor(np.linspace(1, 1, 10))
|
||||
c = Tensor(np.linspace(10, 20, 5, endpoint=False))
|
||||
d = Tensor(np.linspace(10, 20, 5, endpoint=True))
|
||||
e = Tensor(np.linspace(1, 10, 10, retstep=True))
|
||||
f = Tensor(np.linspace(1, 10, 10).reshape([10, 1]))
|
||||
return a, b, c, d, e, f
|
||||
a, b, c, d, e, f = np_linspace()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
print("d:", d)
|
||||
print("e:", e)
|
||||
print("f:", f)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_np_arange_slice_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with arange slice in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_arange_slice_1():
|
||||
x = np.arange(10)
|
||||
index = slice(2, 7, 2)
|
||||
a = Tensor(x[index])
|
||||
b = Tensor(x[2:7:2])
|
||||
c = Tensor(x[5])
|
||||
d = Tensor(x[2:])
|
||||
e = Tensor(x[2:5])
|
||||
return a, b, c, d, e
|
||||
a, b, c, d, e = np_arange_slice_1()
|
||||
assert np.all(a.asnumpy() == Tensor(np.array([2, 4, 6])).asnumpy())
|
||||
assert np.all(b.asnumpy() == Tensor(np.array([2, 4, 6])).asnumpy())
|
||||
assert np.all(c.asnumpy() == Tensor(np.array([5])).asnumpy())
|
||||
assert np.all(d.asnumpy() == Tensor(np.array([2, 3, 4, 5, 6, 7, 8, 9])).asnumpy())
|
||||
assert np.all(e.asnumpy() == Tensor(np.array([2, 3, 4])).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_np_arange_slice_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with arange slice in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_arange_slice_2():
|
||||
x = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]])
|
||||
a = Tensor(x[1:])
|
||||
b = Tensor(x[..., 1])
|
||||
c = Tensor(x[1, ...])
|
||||
d = Tensor(x[..., 1:])
|
||||
return a, b, c, d
|
||||
a, b, c, d = np_arange_slice_2()
|
||||
assert np.all(a.asnumpy() == Tensor(np.array([[3, 4, 5], [4, 5, 6]])).asnumpy())
|
||||
assert np.all(b.asnumpy() == Tensor(np.array([2, 4, 5])).asnumpy())
|
||||
assert np.all(c.asnumpy() == Tensor(np.array([3, 4, 5])).asnumpy())
|
||||
assert np.all(d.asnumpy() == Tensor(np.array([[2, 3], [4, 5], [5, 6]])).asnumpy())
|
||||
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_np_array_advanced_index_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_1():
|
||||
x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
|
||||
a = Tensor(x[[0, 1, 2], [0, 1, 0]])
|
||||
rows = np.array([[0, 0], [3, 3]])
|
||||
cols = np.array([[0, 2], [0, 2]])
|
||||
b = Tensor(x[rows, cols])
|
||||
c = Tensor(x[1:3, 1:3])
|
||||
d = Tensor(x[1:3, [1, 2]])
|
||||
e = Tensor(x[..., 1:])
|
||||
return a, b, c, d, e
|
||||
a, b, c, d, e = np_array_advanced_index_1()
|
||||
assert np.all(a.asnumpy() == Tensor(np.array([0, 4, 6])).asnumpy())
|
||||
assert np.all(b.asnumpy() == Tensor(np.array([[0, 2], [9, 11]])).asnumpy())
|
||||
assert np.all(c.asnumpy() == Tensor(np.array([[4, 5], [7, 8]])).asnumpy())
|
||||
assert np.all(d.asnumpy() == Tensor(np.array([[4, 5], [7, 8]])).asnumpy())
|
||||
assert np.all(e.asnumpy() == Tensor(np.array([[1, 2], [4, 5], [7, 8], [10, 11]])).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_advanced_index_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_2():
|
||||
x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
|
||||
y = np.array([np.nan, 1, 2, np.nan, 3, 4, 5])
|
||||
z = np.array([1, 2 + 6j, 5, 3.5 + 5j])
|
||||
a = Tensor(x[x > 5])
|
||||
b = Tensor(y[~np.isnan(y)])
|
||||
c = Tensor(z[np.iscomplex(z)])
|
||||
return a, b, c
|
||||
a, b, c = np_array_advanced_index_2()
|
||||
assert np.all(a.asnumpy() == Tensor(np.array([6, 7, 8, 9, 10, 11])).asnumpy())
|
||||
assert np.all(b.asnumpy() == Tensor(np.array([1., 2., 3., 4., 5.])).asnumpy())
|
||||
assert np.all(c.asnumpy() == Tensor(np.array([2. + 6.j, 3.5 + 5.j])).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_np_array_advanced_index_3():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_3():
|
||||
x = np.arange(32).reshape((8, 4))
|
||||
a = Tensor(x[[4, 2, 1, 7]])
|
||||
y = np.arange(32).reshape((8, 4))
|
||||
b = Tensor(y[[-4, -2, -1, -7]])
|
||||
z = np.arange(32).reshape((8, 4))
|
||||
c = Tensor(z[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])])
|
||||
return a, b, c
|
||||
a, b, c = np_array_advanced_index_3()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
|
@ -15,12 +15,11 @@
|
|||
""" test graph fallback """
|
||||
import pytest
|
||||
import numpy as np
|
||||
from mindspore import ms_function, context
|
||||
from mindspore import ms_function, context, Tensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -30,12 +29,12 @@ def test_np_array_1():
|
|||
@ms_function
|
||||
def np_array_1():
|
||||
a = np.array([1, 2, 3])
|
||||
return a
|
||||
return Tensor(a)
|
||||
res = np_array_1()
|
||||
assert res == (1, 2, 3)
|
||||
expect_res = Tensor(np.array([1, 2, 3]))
|
||||
assert np.all(res.asnumpy() == expect_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -45,12 +44,12 @@ def test_np_array_2():
|
|||
@ms_function
|
||||
def np_array_2():
|
||||
a = np.array([[1, 2], [3, 4]])
|
||||
return a
|
||||
return Tensor(a)
|
||||
res = np_array_2()
|
||||
assert res == ([1, 2], [3, 4])
|
||||
expect_res = Tensor(np.array([[1, 2], [3, 4]]))
|
||||
assert np.all(res.asnumpy() == expect_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_3():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -60,9 +59,10 @@ def test_np_array_3():
|
|||
@ms_function
|
||||
def np_array_3():
|
||||
a = np.array([1, 2, 3, 4, 5], ndmin=2)
|
||||
return a
|
||||
return Tensor(a)
|
||||
res = np_array_3()
|
||||
assert res == ([1, 2, 3, 4, 5],)
|
||||
expect_res = Tensor(np.array([[1, 2, 3, 4, 5]]))
|
||||
assert np.all(res.asnumpy() == expect_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -75,12 +75,11 @@ def test_np_array_4():
|
|||
@ms_function
|
||||
def np_array_4():
|
||||
a = np.array([1, 2, 3], dtype=complex)
|
||||
return a
|
||||
return Tensor(a)
|
||||
res = np_array_4()
|
||||
assert res == ((1+0j), (2+0j), (3+0j))
|
||||
assert np.all(res.asnumpy() == Tensor(np.array([1+0j, 2+0j, 3+0j])).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_dtype_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -90,12 +89,11 @@ def test_np_dtype_1():
|
|||
@ms_function
|
||||
def np_dtype_1():
|
||||
t = np.dtype(np.int32)
|
||||
return t
|
||||
return Tensor(np.array([1, 2, 3], dtype=t))
|
||||
res = np_dtype_1()
|
||||
print("res:", res)
|
||||
assert np.all(res.asnumpy() == Tensor(np.array([1, 2, 3], dtype=np.int32)).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_dtype_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -105,9 +103,9 @@ def test_np_dtype_2():
|
|||
@ms_function
|
||||
def np_dtype_2():
|
||||
t = np.dtype('i4')
|
||||
return t
|
||||
return Tensor(np.array([1, 2, 3], dtype=t))
|
||||
res = np_dtype_2()
|
||||
print("res:", res)
|
||||
assert np.all(res.asnumpy() == Tensor(np.array([1, 2, 3], dtype=np.int32)).asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -120,7 +118,7 @@ def test_np_dtype_3():
|
|||
@ms_function
|
||||
def np_dtype_3():
|
||||
t = np.dtype([('age', np.int8)])
|
||||
return t
|
||||
return Tensor(np.array([1, 2, 3], dtype=t))
|
||||
res = np_dtype_3()
|
||||
print("res:", res)
|
||||
|
||||
|
@ -136,12 +134,11 @@ def test_np_dtype_4():
|
|||
def np_dtype_4():
|
||||
student = np.dtype([('name', 'S20'), ('age', 'i1'), ('marks', 'f4')])
|
||||
a = np.array([('abc', 21, 50), ('xyz', 18, 75)], dtype=student)
|
||||
return a
|
||||
return Tensor(a)
|
||||
res = np_dtype_4()
|
||||
print("res:", res)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_ndim():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -151,9 +148,9 @@ def test_np_array_ndim():
|
|||
@ms_function
|
||||
def np_array_ndim():
|
||||
a = np.arange(24)
|
||||
return a.ndim
|
||||
return Tensor(a.ndim)
|
||||
res = np_array_ndim()
|
||||
print("res:", res)
|
||||
assert res == 1
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -167,9 +164,9 @@ def test_np_array_reshape_1():
|
|||
def np_array_reshape_1():
|
||||
a = np.array([[1, 2, 3], [4, 5, 6]])
|
||||
b = a.reshape(3, 2)
|
||||
return b.ndim
|
||||
return Tensor(b.ndim)
|
||||
res = np_array_reshape_1()
|
||||
print("res:", res)
|
||||
assert res == 2
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -198,9 +195,10 @@ def test_np_array_itemsize():
|
|||
@ms_function
|
||||
def np_array_itemsize():
|
||||
a = np.array([1, 2, 3, 4, 5], dtype=np.int8)
|
||||
return a.itemsize
|
||||
return Tensor(a.itemsize)
|
||||
res = np_array_itemsize()
|
||||
print("res:", res)
|
||||
assert res == 1
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -218,7 +216,6 @@ def test_np_array_flags():
|
|||
print("res:", res)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_empty_zeros_ones():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -230,12 +227,12 @@ def test_np_empty_zeros_ones():
|
|||
x = np.empty([3, 2], dtype=np.int)
|
||||
y = np.zeros(x.shape, dtype=np.int)
|
||||
z = np.ones(x.shape, dtype=np.int)
|
||||
return y + z
|
||||
return Tensor(y + z)
|
||||
res = np_empty_zeros_ones()
|
||||
print("res:", res)
|
||||
except_res = Tensor(np.ones([3, 2], dtype=np.int))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_asarray_list():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -246,12 +243,12 @@ def test_np_asarray_list():
|
|||
def np_asarray_list():
|
||||
x = [1, 2, 3]
|
||||
y = np.asarray(x)
|
||||
return y
|
||||
return Tensor(y)
|
||||
res = np_asarray_list()
|
||||
print("res:", res)
|
||||
except_res = Tensor(np.asarray([1, 2, 3]))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_asarray_tuple():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -262,9 +259,10 @@ def test_np_asarray_tuple():
|
|||
def np_asarray_tuple():
|
||||
x = (1, 2, 3)
|
||||
y = np.asarray(x)
|
||||
return y
|
||||
return Tensor(y)
|
||||
res = np_asarray_tuple()
|
||||
print("res:", res)
|
||||
except_res = Tensor(np.asarray((1, 2, 3)))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
|
@ -278,7 +276,7 @@ def test_np_asarray_tuple_list():
|
|||
def np_asarray_tuple_list():
|
||||
x = [(1, 2, 3), (4, 5)]
|
||||
y = np.asarray(x)
|
||||
return y
|
||||
return Tensor(y)
|
||||
res = np_asarray_tuple_list()
|
||||
print("res:", res)
|
||||
|
||||
|
@ -299,7 +297,6 @@ def test_np_frombuffer():
|
|||
print("res:", res)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_fromiter():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -311,12 +308,12 @@ def test_np_fromiter():
|
|||
l = range(5)
|
||||
it = iter(l)
|
||||
x = np.fromiter(it, dtype=float)
|
||||
return x
|
||||
return Tensor(x)
|
||||
res = np_fromiter()
|
||||
print("res:", res)
|
||||
except_res = Tensor(np.asarray([0., 1., 2., 3., 4.]))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_arange():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -327,38 +324,12 @@ def test_np_arange():
|
|||
def np_arange():
|
||||
x = np.arange(5, dtype=float)
|
||||
y = np.arange(10, 20, 2)
|
||||
return x, y
|
||||
res1, res2 = np_arange()
|
||||
print("res1:", res1)
|
||||
print("res2:", res2)
|
||||
return Tensor(x + y)
|
||||
res = np_arange()
|
||||
except_res = Tensor(np.asarray([10., 13., 16., 19., 22.]))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_linspace():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with linspace in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_linspace():
|
||||
a = np.linspace(1, 10, 10)
|
||||
b = np.linspace(1, 1, 10)
|
||||
c = np.linspace(10, 20, 5, endpoint=False)
|
||||
d = np.linspace(10, 20, 5, endpoint=True)
|
||||
e = np.linspace(1, 10, 10, retstep=True)
|
||||
f = np.linspace(1, 10, 10).reshape([10, 1])
|
||||
return a, b, c, d, e, f
|
||||
a, b, c, d, e, f = np_linspace()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
print("d:", d)
|
||||
print("e:", e)
|
||||
print("f:", f)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_logspace():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
|
@ -367,126 +338,8 @@ def test_np_logspace():
|
|||
"""
|
||||
@ms_function
|
||||
def np_logspace():
|
||||
a = np.logspace(1.0, 2.0, num=10)
|
||||
b = np.logspace(0, 9, 10, base=2)
|
||||
return a, b
|
||||
a, b = np_logspace()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_arange_slice_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with arange slice in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_arange_slice_1():
|
||||
x = np.arange(10)
|
||||
index = slice(2, 7, 2)
|
||||
a = x[index]
|
||||
b = x[2:7:2]
|
||||
c = x[5]
|
||||
d = x[2:]
|
||||
e = x[2:5]
|
||||
return a, b, c, d, e
|
||||
a, b, c, d, e = np_arange_slice_1()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
print("d:", d)
|
||||
print("e:", e)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_arange_slice_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with arange slice in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_arange_slice_2():
|
||||
x = np.array([[1, 2, 3], [3, 4, 5], [4, 5, 6]])
|
||||
a = x[1:]
|
||||
b = x[..., 1]
|
||||
c = x[1, ...]
|
||||
d = x[..., 1:]
|
||||
return a, b, c, d
|
||||
a, b, c, d = np_arange_slice_2()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
print("d:", d)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_advanced_index_1():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_1():
|
||||
x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
|
||||
a = x[[0, 1, 2], [0, 1, 0]]
|
||||
rows = np.array([[0, 0], [3, 3]])
|
||||
cols = np.array([[0, 2], [0, 2]])
|
||||
b = x[rows, cols]
|
||||
c = x[1:3, 1:3]
|
||||
d = x[1:3, [1, 2]]
|
||||
e = x[..., 1:]
|
||||
return a, b, c, d, e
|
||||
a, b, c, d, e = np_array_advanced_index_1()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
print("d:", d)
|
||||
print("e:", e)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_advanced_index_2():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_2():
|
||||
x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]])
|
||||
y = np.array([np.nan, 1, 2, np.nan, 3, 4, 5])
|
||||
z = np.array([1, 2 + 6j, 5, 3.5 + 5j])
|
||||
a = x[x > 5]
|
||||
b = y[~np.isnan(y)]
|
||||
c = z[np.iscomplex(z)]
|
||||
return a, b, c
|
||||
a, b, c = np_array_advanced_index_2()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason='Not support graph fallback feature yet')
|
||||
def test_np_array_advanced_index_3():
|
||||
"""
|
||||
Feature: JIT Fallback
|
||||
Description: Test numpy with array advanced index in graph mode.
|
||||
Expectation: No exception.
|
||||
"""
|
||||
@ms_function
|
||||
def np_array_advanced_index_3():
|
||||
x = np.arange(32).reshape((8, 4))
|
||||
a = x[[4, 2, 1, 7]]
|
||||
y = np.arange(32).reshape((8, 4))
|
||||
b = y[[-4, -2, -1, -7]]
|
||||
z = np.arange(32).reshape((8, 4))
|
||||
c = z[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])]
|
||||
return a, b, c
|
||||
a, b, c = np_array_advanced_index_3()
|
||||
print("a:", a)
|
||||
print("b:", b)
|
||||
print("c:", c)
|
||||
a = np.logspace(0, 9, 10, base=2)
|
||||
return Tensor(a)
|
||||
res = np_logspace()
|
||||
except_res = Tensor(np.array([1., 2., 4., 8., 16., 32., 64., 128., 256., 512.]))
|
||||
assert np.all(res.asnumpy() == except_res.asnumpy())
|
||||
|
|
Loading…
Reference in New Issue