forked from mindspore-Ecosystem/mindspore
!16452 [assistant][BandpassBiquadOp]
Merge pull request !16452 from StyleHang/BandpassBiquadOp
This commit is contained in:
commit
2c7b8e73df
|
@ -18,6 +18,7 @@
|
|||
|
||||
#include "minddata/dataset/audio/ir/kernels/allpass_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/band_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/bandpass_biquad_ir.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
@ -55,6 +56,24 @@ BandBiquad::BandBiquad(int32_t sample_rate, float central_freq, float Q, bool no
|
|||
std::shared_ptr<TensorOperation> BandBiquad::Parse() {
|
||||
return std::make_shared<BandBiquadOperation>(data_->sample_rate_, data_->central_freq_, data_->Q_, data_->noise_);
|
||||
}
|
||||
|
||||
// BandpassBiquad Transform Operation.
|
||||
struct BandpassBiquad::Data {
|
||||
Data(int32_t sample_rate, float central_freq, float Q, bool const_skirt_gain)
|
||||
: sample_rate_(sample_rate), central_freq_(central_freq), Q_(Q), const_skirt_gain_(const_skirt_gain) {}
|
||||
int32_t sample_rate_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
bool const_skirt_gain_;
|
||||
};
|
||||
|
||||
BandpassBiquad::BandpassBiquad(int32_t sample_rate, float central_freq, float Q, bool const_skirt_gain)
|
||||
: data_(std::make_shared<Data>(sample_rate, central_freq, Q, const_skirt_gain)) {}
|
||||
|
||||
std::shared_ptr<TensorOperation> BandpassBiquad::Parse() {
|
||||
return std::make_shared<BandpassBiquadOperation>(data_->sample_rate_, data_->central_freq_, data_->Q_,
|
||||
data_->const_skirt_gain_);
|
||||
}
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
12
mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/audio/kernels/ir/bindings.cc
Normal file → Executable file
12
mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/audio/kernels/ir/bindings.cc
Normal file → Executable file
|
@ -19,6 +19,7 @@
|
|||
#include "minddata/dataset/api/python/pybind_register.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/allpass_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/band_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/bandpass_biquad_ir.h"
|
||||
#include "minddata/dataset/include/dataset/transforms.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -44,5 +45,16 @@ PYBIND_REGISTER(
|
|||
return band_biquad;
|
||||
}));
|
||||
}));
|
||||
PYBIND_REGISTER(
|
||||
BandpassBiquadOperation, 1, ([](const py::module *m) {
|
||||
(void)py::class_<audio::BandpassBiquadOperation, TensorOperation, std::shared_ptr<audio::BandpassBiquadOperation>>(
|
||||
*m, "BandpassBiquadOperation")
|
||||
.def(py::init([](int32_t sample_rate, float central_freq, float Q, bool const_skirt_gain) {
|
||||
auto bandpass_biquad =
|
||||
std::make_shared<audio::BandpassBiquadOperation>(sample_rate, central_freq, Q, const_skirt_gain);
|
||||
THROW_IF_ERROR(bandpass_biquad->ValidateParams());
|
||||
return bandpass_biquad;
|
||||
}));
|
||||
}));
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -4,4 +4,5 @@ set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE
|
|||
add_library(audio-ir-kernels OBJECT
|
||||
allpass_biquad_ir.cc
|
||||
band_biquad_ir.cc
|
||||
bandpass_biquad_ir.cc
|
||||
)
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/audio/ir/kernels/bandpass_biquad_ir.h"
|
||||
|
||||
#include "minddata/dataset/audio/kernels/bandpass_biquad_op.h"
|
||||
|
||||
#include "minddata/dataset/audio/ir/validators.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
namespace audio {
|
||||
// BandpassBiquadOperation
|
||||
BandpassBiquadOperation::BandpassBiquadOperation(int32_t sample_rate, float central_freq, float Q,
|
||||
bool const_skirt_gain)
|
||||
: sample_rate_(sample_rate), central_freq_(central_freq), Q_(Q), const_skirt_gain_(const_skirt_gain) {}
|
||||
|
||||
Status BandpassBiquadOperation::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(ValidateScalar("BandpassBiquad", "Q", Q_, {0, 1.0}, true, false));
|
||||
RETURN_IF_NOT_OK(CheckScalarNotZero("BandpassBiquad", "sample_rate", sample_rate_));
|
||||
return Status::OK();
|
||||
}
|
||||
std::shared_ptr<TensorOp> BandpassBiquadOperation::Build() {
|
||||
std::shared_ptr<BandpassBiquadOp> tensor_op =
|
||||
std::make_shared<BandpassBiquadOp>(sample_rate_, central_freq_, Q_, const_skirt_gain_);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
Status BandpassBiquadOperation::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["sample_rate"] = sample_rate_;
|
||||
args["central_freq"] = central_freq_;
|
||||
args["Q"] = Q_;
|
||||
args["const_skirt_gain"] = const_skirt_gain_;
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_BANDPASS_BIQUAD_IR_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_BANDPASS_BIQUAD_IR_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "include/api/status.h"
|
||||
#include "minddata/dataset/include/dataset/constants.h"
|
||||
#include "minddata/dataset/include/dataset/transforms.h"
|
||||
#include "minddata/dataset/kernels/ir/tensor_operation.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
namespace audio {
|
||||
// Char arrays storing name of corresponding classes (in alphabetical order)
|
||||
constexpr char kBandpassBiquadOperation[] = "BandpassBiquad";
|
||||
|
||||
class BandpassBiquadOperation : public TensorOperation {
|
||||
public:
|
||||
explicit BandpassBiquadOperation(int32_t sample_rate, float central_freq, float Q, bool const_skirt_gain);
|
||||
|
||||
~BandpassBiquadOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
Status ValidateParams() override;
|
||||
|
||||
std::string Name() const override { return kBandpassBiquadOperation; }
|
||||
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
private:
|
||||
int32_t sample_rate_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
bool const_skirt_gain_;
|
||||
};
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_BANDPASS_BIQUAD_IR_H_
|
|
@ -4,5 +4,5 @@ set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE
|
|||
add_library(audio-kernels OBJECT
|
||||
allpass_biquad_op.cc
|
||||
band_biquad_op.cc
|
||||
)
|
||||
|
||||
bandpass_biquad_op.cc
|
||||
)
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/audio/kernels/bandpass_biquad_op.h"
|
||||
|
||||
#include "minddata/dataset/audio/kernels/audio_utils.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
Status BandpassBiquadOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
TensorShape input_shape = input->shape();
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input_shape.Size() > 0, "BandpassBiquad: inpute dimension should be greater than 0.");
|
||||
// check input type, it should be DE_FLOAT32 or DE_FLOAT16 or DE_FLOAT64
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType(DataType::DE_FLOAT32) ||
|
||||
input->type() == DataType(DataType::DE_FLOAT16) ||
|
||||
input->type() == DataType(DataType::DE_FLOAT64),
|
||||
"BandpassBiquad: input type should be float, but got " + input->type().ToString());
|
||||
float w0 = 2 * PI * central_freq_ / sample_rate_;
|
||||
float alpha = sin(w0) / 2 / Q_;
|
||||
float temp;
|
||||
if (const_skirt_gain_) {
|
||||
temp = sin(w0) / 2;
|
||||
} else {
|
||||
temp = alpha;
|
||||
}
|
||||
|
||||
float b0 = temp;
|
||||
float b1 = 0.0;
|
||||
float b2 = -temp;
|
||||
float a0 = 1 + alpha;
|
||||
float a1 = (-2) * cos(w0);
|
||||
float a2 = 1 - alpha;
|
||||
|
||||
if (input->type() == DataType(DataType::DE_FLOAT32))
|
||||
return Biquad(input, output, static_cast<float>(b0), static_cast<float>(b1), static_cast<float>(b2),
|
||||
static_cast<float>(a0), static_cast<float>(a1), static_cast<float>(a2));
|
||||
else if (input->type() == DataType(DataType::DE_FLOAT64))
|
||||
return Biquad(input, output, static_cast<double>(b0), static_cast<double>(b1), static_cast<double>(b2),
|
||||
static_cast<double>(a0), static_cast<double>(a1), static_cast<double>(a2));
|
||||
else
|
||||
return Biquad(input, output, static_cast<float16>(b0), static_cast<float16>(b1), static_cast<float16>(b2),
|
||||
static_cast<float16>(a0), static_cast<float16>(a1), static_cast<float16>(a2));
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,53 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_BANDPASS_BIQUAD_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_BANDPASS_BIQUAD_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class BandpassBiquadOp : public TensorOp {
|
||||
public:
|
||||
BandpassBiquadOp(int32_t sample_rate, float central_freq, float Q, bool const_skirt_gain)
|
||||
: sample_rate_(sample_rate), central_freq_(central_freq), Q_(Q), const_skirt_gain_(const_skirt_gain) {}
|
||||
|
||||
~BandpassBiquadOp() override = default;
|
||||
|
||||
void Print(std::ostream &out) const override {
|
||||
out << Name() << ": sample_rate: " << sample_rate_ << ", central_freq: " << central_freq_ << ", Q: " << Q_
|
||||
<< ", const_skirt_gain: " << const_skirt_gain_ << std::endl;
|
||||
}
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
std::string Name() const override { return kBandpassBiquadOp; }
|
||||
|
||||
private:
|
||||
int32_t sample_rate_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
bool const_skirt_gain_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_BANDPASS_BIQUAD_OP_H_
|
|
@ -78,6 +78,30 @@ class AllpassBiquad final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Design two-pole band-pass filter.
|
||||
class BandpassBiquad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] sample_rate Sampling rate of the waveform, e.g. 44100 (Hz).
|
||||
/// \param[in] central_freq Central frequency (in Hz).
|
||||
/// \param[in] Q Quality factor, https://en.wikipedia.org/wiki/Q_factor (Default: 0.707).
|
||||
/// \param[in] const_skirt_gain, If ``True``, uses a constant skirt gain (peak gain = Q). If ``False``, uses a
|
||||
/// constant 0dB peak gain. (Default: False).
|
||||
explicit BandpassBiquad(int32_t sample_rate, float central_freq, float Q = 0.707, bool const_skirt_gain = false);
|
||||
|
||||
/// \brief Destructor.
|
||||
~BandpassBiquad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -139,6 +139,7 @@ constexpr char kSentencepieceTokenizerOp[] = "SentencepieceTokenizerOp";
|
|||
// audio
|
||||
constexpr char kAllpassBiquadOp[] = "AllpassBiquadOp";
|
||||
constexpr char kBandBiquadOp[] = "BandBiquadOp";
|
||||
constexpr char kBandpassBiquadOp[] = "BandpassBiquadOp";
|
||||
|
||||
// data
|
||||
constexpr char kConcatenateOp[] = "ConcatenateOp";
|
||||
|
|
|
@ -20,7 +20,7 @@ to improve their training models.
|
|||
import mindspore._c_dataengine as cde
|
||||
import numpy as np
|
||||
from ..transforms.c_transforms import TensorOperation
|
||||
from .validators import check_allpass_biquad, check_band_biquad
|
||||
from .validators import check_allpass_biquad, check_band_biquad, check_bandpass_biquad
|
||||
|
||||
|
||||
class AudioTensorOperation(TensorOperation):
|
||||
|
@ -102,3 +102,33 @@ class BandBiquad(AudioTensorOperation):
|
|||
|
||||
def parse(self):
|
||||
return cde.BandBiquadOperation(self.sample_rate, self.central_freq, self.Q, self.noise)
|
||||
|
||||
|
||||
class BandpassBiquad(TensorOperation):
|
||||
"""
|
||||
Design two-pole band-pass filter. Similar to SoX implementation.
|
||||
|
||||
Args:
|
||||
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
|
||||
central_freq (float): central frequency (in Hz)
|
||||
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor Range: (0,1] (Default=0.707).
|
||||
const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q).
|
||||
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.audio.transforms as audio
|
||||
>>> import numpy as np
|
||||
|
||||
>>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03],[9.246826171875e-03, 1.0894775390625e-02]])
|
||||
>>> bandpass_biquad_op = audio.BandpassBiquad(44100, 200.0)
|
||||
>>> waveform_filtered = bandpass_biquad_op(waveform)
|
||||
"""
|
||||
@check_bandpass_biquad
|
||||
def __init__(self, sample_rate, central_freq, Q=0.707, const_skirt_gain=False):
|
||||
self.sample_rate = sample_rate
|
||||
self.central_freq = central_freq
|
||||
self.Q = Q
|
||||
self.const_skirt_gain = const_skirt_gain
|
||||
|
||||
def parse(self):
|
||||
return cde.BandpassBiquadOperation(self.sample_rate, self.central_freq, self.Q, self.const_skirt_gain)
|
||||
|
|
|
@ -44,6 +44,11 @@ def check_biquad_noise(noise):
|
|||
type_check(noise, (bool,), "noise")
|
||||
|
||||
|
||||
def check_biquad_const_skirt_gain(const_skirt_gain):
|
||||
"""Wrapper method to check the parameters of const_skirt_gain."""
|
||||
type_check(const_skirt_gain, (bool,), "const_skirt_gain")
|
||||
|
||||
|
||||
def check_band_biquad(method):
|
||||
"""Wrapper method to check the parameters of BandBiquad."""
|
||||
|
||||
|
@ -59,6 +64,7 @@ def check_band_biquad(method):
|
|||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_allpass_biquad(method):
|
||||
"""Wrapper method to check the parameters of CutMixBatch."""
|
||||
|
||||
|
@ -72,3 +78,19 @@ def check_allpass_biquad(method):
|
|||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_bandpass_biquad(method):
|
||||
"""Wrapper method to check the parameters of BandpassBiquad."""
|
||||
|
||||
@ wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
[sample_rate, central_freq, Q, const_skirt_gain], _ = parse_user_args(
|
||||
method, *args, **kwargs)
|
||||
check_biquad_sample_rate(sample_rate)
|
||||
check_biquad_central_freq(central_freq)
|
||||
check_biquad_Q(Q)
|
||||
check_biquad_const_skirt_gain(const_skirt_gain)
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
|
|
@ -682,3 +682,4 @@ def check_c_tensor_op(param, param_name):
|
|||
def replace_none(value, default):
|
||||
""" replaces None with a default value."""
|
||||
return value if value is not None else default
|
||||
|
|
@ -165,3 +165,71 @@ TEST_F(MindDataTestPipeline, Level0_TestAllpassBiquad002) {
|
|||
std::shared_ptr<Iterator> iter02 = ds02->CreateIterator();
|
||||
EXPECT_EQ(iter02, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, Level0_TestBandpassBiquad001) {
|
||||
MS_LOG(INFO) << "Basic Function Test";
|
||||
// Original waveform
|
||||
std::shared_ptr<SchemaObj> schema = Schema();
|
||||
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {2, 200}));
|
||||
std::shared_ptr<Dataset> ds = RandomData(50, schema);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
ds = ds->SetNumWorkers(4);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
auto BandpassBiquadOp = audio::BandpassBiquad(44100, 200.0);
|
||||
|
||||
ds = ds->Map({BandpassBiquadOp});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Filtered waveform by bandpassbiquad
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
std::vector<int64_t> expected = {2, 200};
|
||||
|
||||
int i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto col = row["inputData"];
|
||||
ASSERT_EQ(col.Shape(), expected);
|
||||
ASSERT_EQ(col.Shape().size(), 2);
|
||||
ASSERT_EQ(col.DataType(), mindspore::DataType::kNumberTypeFloat32);
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
EXPECT_EQ(i, 50);
|
||||
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, Level0_TestBandpassBiquad002) {
|
||||
MS_LOG(INFO) << "Wrong Arg.";
|
||||
std::shared_ptr<SchemaObj> schema = Schema();
|
||||
// Original waveform
|
||||
ASSERT_OK(schema->add_column("inputData", mindspore::DataType::kNumberTypeFloat32, {2, 2}));
|
||||
std::shared_ptr<Dataset> ds = RandomData(50, schema);
|
||||
std::shared_ptr<Dataset> ds01;
|
||||
std::shared_ptr<Dataset> ds02;
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Check sample_rate
|
||||
MS_LOG(INFO) << "sample_rate is zero.";
|
||||
auto bandpass_biquad_op_01 = audio::BandpassBiquad(0, 200);
|
||||
ds01 = ds->Map({bandpass_biquad_op_01});
|
||||
EXPECT_NE(ds01, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter01 = ds01->CreateIterator();
|
||||
EXPECT_EQ(iter01, nullptr);
|
||||
|
||||
// Check Q_
|
||||
MS_LOG(INFO) << "Q_ is zero.";
|
||||
auto bandpass_biquad_op_02 = audio::BandpassBiquad(44100, 200, 0);
|
||||
ds02 = ds->Map({bandpass_biquad_op_02});
|
||||
EXPECT_NE(ds02, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter02 = ds02->CreateIterator();
|
||||
EXPECT_EQ(iter02, nullptr);
|
||||
}
|
||||
|
|
|
@ -372,3 +372,41 @@ TEST_F(MindDataTestExecute, TestBandBiquadWithWrongArg) {
|
|||
Status s01 = Transform01(input_02, &input_02);
|
||||
EXPECT_FALSE(s01.IsOk());
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestBandpassBiquadWithEager) {
|
||||
MS_LOG(INFO) << "Basic Function Test With Eager.";
|
||||
// Original waveform
|
||||
std::vector<float> labels = {
|
||||
2.716064453125000000e-03, 6.347656250000000000e-03, 9.246826171875000000e-03, 1.089477539062500000e-02,
|
||||
1.138305664062500000e-02, 1.156616210937500000e-02, 1.394653320312500000e-02, 1.550292968750000000e-02,
|
||||
1.614379882812500000e-02, 1.840209960937500000e-02, 1.718139648437500000e-02, 1.599121093750000000e-02,
|
||||
1.647949218750000000e-02, 1.510620117187500000e-02, 1.385498046875000000e-02, 1.345825195312500000e-02,
|
||||
1.419067382812500000e-02, 1.284790039062500000e-02, 1.052856445312500000e-02, 9.368896484375000000e-03};
|
||||
std::shared_ptr<Tensor> input;
|
||||
ASSERT_OK(Tensor::CreateFromVector(labels, TensorShape({2, 10}), &input));
|
||||
auto input_02 = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input));
|
||||
std::shared_ptr<TensorTransform> bandpass_biquad_01 = std::make_shared<audio::BandpassBiquad>(44100, 200);
|
||||
mindspore::dataset::Execute Transform01({bandpass_biquad_01});
|
||||
// Filtered waveform by bandpassbiquad
|
||||
Status s01 = Transform01(input_02, &input_02);
|
||||
EXPECT_TRUE(s01.IsOk());
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestBandpassBiquadWithWrongArg) {
|
||||
MS_LOG(INFO) << "Wrong Arg.";
|
||||
std::vector<double> labels = {
|
||||
2.716064453125000000e-03, 6.347656250000000000e-03, 9.246826171875000000e-03, 1.089477539062500000e-02,
|
||||
1.138305664062500000e-02, 1.156616210937500000e-02, 1.394653320312500000e-02, 1.550292968750000000e-02,
|
||||
1.614379882812500000e-02, 1.840209960937500000e-02, 1.718139648437500000e-02, 1.599121093750000000e-02,
|
||||
1.647949218750000000e-02, 1.510620117187500000e-02, 1.385498046875000000e-02, 1.345825195312500000e-02,
|
||||
1.419067382812500000e-02, 1.284790039062500000e-02, 1.052856445312500000e-02, 9.368896484375000000e-03};
|
||||
std::shared_ptr<Tensor> input;
|
||||
ASSERT_OK(Tensor::CreateFromVector(labels, TensorShape({2, 10}), &input));
|
||||
auto input_02 = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input));
|
||||
// Check Q
|
||||
MS_LOG(INFO) << "Q is zero.";
|
||||
std::shared_ptr<TensorTransform> bandpass_biquad_op = std::make_shared<audio::BandpassBiquad>(44100, 200, 0);
|
||||
mindspore::dataset::Execute Transform01({bandpass_biquad_op});
|
||||
Status s01 = Transform01(input_02, &input_02);
|
||||
EXPECT_FALSE(s01.IsOk());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,114 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.audio.transforms as audio
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
def _count_unequal_element(data_expected, data_me, rtol, atol):
|
||||
|
||||
assert data_expected.shape == data_me.shape
|
||||
total_count = len(data_expected.flatten())
|
||||
error = np.abs(data_expected - data_me)
|
||||
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
|
||||
loss_count = np.count_nonzero(greater)
|
||||
assert (loss_count / total_count) < rtol, \
|
||||
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
|
||||
format(data_expected[greater], data_me[greater], error[greater])
|
||||
|
||||
|
||||
def test_func_bandpass_biquad_eager():
|
||||
""" mindspore eager mode normal testcase:bandpass_biquad op"""
|
||||
|
||||
# Original waveform
|
||||
waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
|
||||
# Expect waveform
|
||||
expect_waveform = np.array([[0.01979545, 0.07838227, 0.17417782],
|
||||
[0.07918181, 0.25414270, 0.46156447]], dtype=np.float64)
|
||||
bandpass_biquad_op = audio.BandpassBiquad(44000, 200.0, 0.707, False)
|
||||
# Filtered waveform by bandpassbiquad
|
||||
output = bandpass_biquad_op(waveform)
|
||||
_count_unequal_element(expect_waveform, output, 0.0001, 0.0001)
|
||||
|
||||
|
||||
def test_func_bandpass_biquad_pipeline():
|
||||
""" mindspore pipeline mode normal testcase:bandpass_biquad op"""
|
||||
|
||||
# Original waveform
|
||||
waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
|
||||
# Expect waveform
|
||||
expect_waveform = np.array([[0.01979545, 0.07838227, 0.17417782],
|
||||
[0.07918181, 0.25414270, 0.46156447]], dtype=np.float64)
|
||||
label = np.random.sample((2, 1))
|
||||
data = (waveform, label)
|
||||
dataset = ds.NumpySlicesDataset(data, ["channel", "sample"], shuffle=False)
|
||||
bandpass_biquad_op = audio.BandpassBiquad(44000, 200.0)
|
||||
# Filtered waveform by bandpassbiquad
|
||||
dataset = dataset.map(
|
||||
input_columns=["channel"], operations=bandpass_biquad_op, num_parallel_workers=8)
|
||||
i = 0
|
||||
for _ in dataset.create_dict_iterator(output_numpy=True):
|
||||
_count_unequal_element(expect_waveform[i, :],
|
||||
_['channel'], 0.0001, 0.0001)
|
||||
i += 1
|
||||
|
||||
|
||||
def test_bandpass_biquad_invalid_input():
|
||||
def test_invalid_input(test_name, sample_rate, central_freq, Q, const_skirt_gain, error, error_msg):
|
||||
logger.info(
|
||||
"Test BandpassBiquad with bad input: {0}".format(test_name))
|
||||
with pytest.raises(error) as error_info:
|
||||
audio.BandpassBiquad(
|
||||
sample_rate, central_freq, Q, const_skirt_gain)
|
||||
assert error_msg in str(error_info.value)
|
||||
|
||||
test_invalid_input("invalid sample_rate parameter type as a float", 44100.5, 200, 0.707, True, TypeError,
|
||||
"Argument sample_rate with value 44100.5 is not of type [<class 'int'>],"
|
||||
" but got <class 'float'>.")
|
||||
test_invalid_input("invalid sample_rate parameter type as a String", "44100", 200, 0.707, True, TypeError,
|
||||
"Argument sample_rate with value 44100 is not of type [<class 'int'>], but got <class 'str'>.")
|
||||
test_invalid_input("invalid contral_freq parameter type as a String", 44100, "200", 0.707, True, TypeError,
|
||||
"Argument central_freq with value 200 is not of type [<class 'float'>, <class 'int'>],"
|
||||
" but got <class 'str'>.")
|
||||
test_invalid_input("invalid sample_rate parameter value", 0, 200, 0.707, True, ValueError,
|
||||
"Input sample_rate can not be 0.")
|
||||
test_invalid_input("invalid contral_freq parameter value", 44100, 32434324324234321, 0.707, True, ValueError,
|
||||
"Input central_freq is not within the required interval of [-16777216, 16777216].")
|
||||
test_invalid_input("invalid Q parameter type as a String", 44100, 200, "0.707", True, TypeError,
|
||||
"Argument Q with value 0.707 is not of type [<class 'float'>, <class 'int'>],"
|
||||
" but got <class 'str'>.")
|
||||
test_invalid_input("invalid Q parameter value", 44100, 200, 1.707, True, ValueError,
|
||||
"Input Q is not within the required interval of (0, 1].")
|
||||
test_invalid_input("invalid Q parameter value", 44100, 200, 0, True, ValueError,
|
||||
"Input Q is not within the required interval of (0, 1].")
|
||||
test_invalid_input("invalid sample_rate parameter value", 441324343243242342345300, 200, 0.707, True, ValueError,
|
||||
"Input sample_rate is not within the required interval of [-2147483648, 2147483647].")
|
||||
test_invalid_input("invalid sample_rate parameter value", None, 200, 0.707, True, TypeError,
|
||||
"Argument sample_rate with value None is not of type [<class 'int'>],"
|
||||
" but got <class 'NoneType'>.")
|
||||
test_invalid_input("invalid central_rate parameter value", 44100, None, 0.707, True, TypeError,
|
||||
"Argument central_freq with value None is not of type [<class 'float'>, <class 'int'>],"
|
||||
" but got <class 'NoneType'>.")
|
||||
test_invalid_input("invalid const_skirt_gain parameter type as a String", 44100, 200, 0.707, "False", TypeError,
|
||||
"Argument const_skirt_gain with value False is not of type [<class 'bool'>], " +
|
||||
"but got <class 'str'>.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_func_bandpass_biquad_eager()
|
||||
test_func_bandpass_biquad_pipeline()
|
||||
test_bandpass_biquad_invalid_input()
|
Loading…
Reference in New Issue