forked from mindspore-Ecosystem/mindspore
update proto file
This commit is contained in:
parent
c5c36a2c75
commit
2c1b67c1a3
|
@ -153,14 +153,14 @@ set(LITE_SRC
|
|||
)
|
||||
|
||||
file(GLOB PROTO_FILE ""
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/parser/caffe/caffe.proto
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/parser/tf/proto/*.proto
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/parser/onnx/onnx.proto)
|
||||
${TOP_DIR}/third_party/proto/caffe/caffe.proto
|
||||
${TOP_DIR}/third_party/proto/tensorflow/*.proto
|
||||
${TOP_DIR}/third_party/proto/onnx/onnx.proto)
|
||||
|
||||
ms_protobuf_generate(PROTO_SRCS PROTO_HDRS ${PROTO_FILE})
|
||||
add_library(proto_mid OBJECT ${PROTO_SRCS})
|
||||
set(TFLITE_FBS_FILES
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/parser/tflite/schema.fbs
|
||||
${TOP_DIR}/third_party/proto/tensorflow/lite/schema.fbs
|
||||
)
|
||||
ms_build_flatbuffers_lite(TFLITE_FBS_FILES ${CMAKE_CURRENT_SOURCE_DIR}/parser/tflite/ tflite_fbs_src
|
||||
${CMAKE_BINARY_DIR}/schema "inner")
|
||||
|
|
|
@ -1,569 +0,0 @@
|
|||
//
|
||||
// WARNING: This file is automatically generated! Please edit onnx.in.proto.
|
||||
//
|
||||
|
||||
|
||||
// Copyright (c) ONNX Project Contributors.
|
||||
// Licensed under the MIT license.
|
||||
|
||||
syntax = "proto2";
|
||||
|
||||
package onnx;
|
||||
|
||||
// Overview
|
||||
//
|
||||
// ONNX is an open specification that is comprised of the following components:
|
||||
//
|
||||
// 1) A definition of an extensible computation graph model.
|
||||
// 2) Definitions of standard data types.
|
||||
// 3) Definitions of built-in operators.
|
||||
//
|
||||
// This document describes the syntax of models and their computation graphs,
|
||||
// as well as the standard data types. Together, they are referred to as the ONNX
|
||||
// Intermediate Representation, or 'IR' for short.
|
||||
//
|
||||
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
|
||||
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
|
||||
|
||||
// Notes
|
||||
//
|
||||
// Release
|
||||
//
|
||||
// We are still in the very early stage of defining ONNX. The current
|
||||
// version of ONNX is a starting point. While we are actively working
|
||||
// towards a complete spec, we would like to get the community involved
|
||||
// by sharing our working version of ONNX.
|
||||
//
|
||||
// Protobuf compatibility
|
||||
//
|
||||
// To simplify framework compatibility, ONNX is defined using the subset of protobuf
|
||||
// that is compatible with both protobuf v2 and v3. This means that we do not use any
|
||||
// protobuf features that are only available in one of the two versions.
|
||||
//
|
||||
// Here are the most notable contortions we have to carry out to work around
|
||||
// these limitations:
|
||||
//
|
||||
// - No 'map' (added protobuf 3.0). We instead represent mappings as lists
|
||||
// of key-value pairs, where order does not matter and duplicates
|
||||
// are not allowed.
|
||||
|
||||
|
||||
// Versioning
|
||||
//
|
||||
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
|
||||
//
|
||||
// To be compatible with both proto2 and proto3, we will use a version number
|
||||
// that is not defined by the default value but an explicit enum number.
|
||||
enum Version {
|
||||
// proto3 requires the first enum value to be zero.
|
||||
// We add this just to appease the compiler.
|
||||
_START_VERSION = 0;
|
||||
// The version field is always serialized and we will use it to store the
|
||||
// version that the graph is generated from. This helps us set up version
|
||||
// control.
|
||||
// For the IR, we are using simple numbers starting with with 0x00000001,
|
||||
// which was the version we published on Oct 10, 2017.
|
||||
IR_VERSION_2017_10_10 = 0x0000000000000001;
|
||||
|
||||
// IR_VERSION 2 published on Oct 30, 2017
|
||||
// - Added type discriminator to AttributeProto to support proto3 users
|
||||
IR_VERSION_2017_10_30 = 0x0000000000000002;
|
||||
|
||||
// IR VERSION 3 published on Nov 3, 2017
|
||||
// - For operator versioning:
|
||||
// - Added new message OperatorSetIdProto
|
||||
// - Added opset_import in ModelProto
|
||||
// - For vendor extensions, added domain in NodeProto
|
||||
IR_VERSION_2017_11_3 = 0x0000000000000003;
|
||||
|
||||
// IR VERSION 4 published on Jan 22, 2019
|
||||
// - Relax constraint that initializers should be a subset of graph inputs
|
||||
// - Add type BFLOAT16
|
||||
IR_VERSION_2019_1_22 = 0x0000000000000004;
|
||||
|
||||
// IR VERSION 5 published on March 18, 2019
|
||||
// - Add message TensorAnnotation.
|
||||
// - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
|
||||
IR_VERSION_2019_3_18 = 0x0000000000000005;
|
||||
|
||||
// IR VERSION 6 published on Sep 19, 2019
|
||||
// - Add support for sparse tensor constants stored in model.
|
||||
// - Add message SparseTensorProto
|
||||
// - Add sparse initializers
|
||||
IR_VERSION = 0x0000000000000006;
|
||||
}
|
||||
|
||||
// Attributes
|
||||
//
|
||||
// A named attribute containing either singular float, integer, string, graph,
|
||||
// and tensor values, or repeated float, integer, string, graph, and tensor values.
|
||||
// An AttributeProto MUST contain the name field, and *only one* of the
|
||||
// following content fields, effectively enforcing a C/C++ union equivalent.
|
||||
message AttributeProto {
|
||||
|
||||
// Note: this enum is structurally identical to the OpSchema::AttrType
|
||||
// enum defined in schema.h. If you rev one, you likely need to rev the other.
|
||||
enum AttributeType {
|
||||
UNDEFINED = 0;
|
||||
FLOAT = 1;
|
||||
INT = 2;
|
||||
STRING = 3;
|
||||
TENSOR = 4;
|
||||
GRAPH = 5;
|
||||
SPARSE_TENSOR = 11;
|
||||
|
||||
FLOATS = 6;
|
||||
INTS = 7;
|
||||
STRINGS = 8;
|
||||
TENSORS = 9;
|
||||
GRAPHS = 10;
|
||||
SPARSE_TENSORS = 12;
|
||||
}
|
||||
|
||||
// The name field MUST be present for this version of the IR.
|
||||
optional string name = 1; // namespace Attribute
|
||||
|
||||
// if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
|
||||
// In this case, this AttributeProto does not contain data, and it's a reference of attribute
|
||||
// in parent scope.
|
||||
// NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
|
||||
optional string ref_attr_name = 21;
|
||||
|
||||
// A human-readable documentation for this attribute. Markdown is allowed.
|
||||
optional string doc_string = 13;
|
||||
|
||||
// The type field MUST be present for this version of the IR.
|
||||
// For 0.0.1 versions of the IR, this field was not defined, and
|
||||
// implementations needed to use has_field heuristics to determine
|
||||
// which value field was in use. For IR_VERSION 0.0.2 or later, this
|
||||
// field MUST be set and match the f|i|s|t|... field in use. This
|
||||
// change was made to accommodate proto3 implementations.
|
||||
optional AttributeType type = 20; // discriminator that indicates which field below is in use
|
||||
|
||||
// Exactly ONE of the following fields must be present for this version of the IR
|
||||
optional float f = 2; // float
|
||||
optional int64 i = 3; // int
|
||||
optional bytes s = 4; // UTF-8 string
|
||||
optional TensorProto t = 5; // tensor value
|
||||
optional GraphProto g = 6; // graph
|
||||
optional SparseTensorProto sparse_tensor = 22; // sparse tensor value
|
||||
// Do not use field below, it's deprecated.
|
||||
// optional ValueProto v = 12; // value - subsumes everything but graph
|
||||
|
||||
repeated float floats = 7; // list of floats
|
||||
repeated int64 ints = 8; // list of ints
|
||||
repeated bytes strings = 9; // list of UTF-8 strings
|
||||
repeated TensorProto tensors = 10; // list of tensors
|
||||
repeated GraphProto graphs = 11; // list of graph
|
||||
repeated SparseTensorProto sparse_tensors = 23; // list of sparse tensors
|
||||
}
|
||||
|
||||
// Defines information on value, including the name, the type, and
|
||||
// the shape of the value.
|
||||
message ValueInfoProto {
|
||||
// This field MUST be present in this version of the IR.
|
||||
optional string name = 1; // namespace Value
|
||||
// This field MUST be present in this version of the IR for
|
||||
// inputs and outputs of the top-level graph.
|
||||
optional TypeProto type = 2;
|
||||
// A human-readable documentation for this value. Markdown is allowed.
|
||||
optional string doc_string = 3;
|
||||
}
|
||||
|
||||
// Nodes
|
||||
//
|
||||
// Computation graphs are made up of a DAG of nodes, which represent what is
|
||||
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
|
||||
//
|
||||
// For example, it can be a node of type "Conv" that takes in an image, a filter
|
||||
// tensor and a bias tensor, and produces the convolved output.
|
||||
message NodeProto {
|
||||
repeated string input = 1; // namespace Value
|
||||
repeated string output = 2; // namespace Value
|
||||
|
||||
// An optional identifier for this node in a graph.
|
||||
// This field MAY be absent in ths version of the IR.
|
||||
optional string name = 3; // namespace Node
|
||||
|
||||
// The symbolic identifier of the Operator to execute.
|
||||
optional string op_type = 4; // namespace Operator
|
||||
// The domain of the OperatorSet that specifies the operator named by op_type.
|
||||
optional string domain = 7; // namespace Domain
|
||||
|
||||
// Additional named attributes.
|
||||
repeated AttributeProto attribute = 5;
|
||||
|
||||
// A human-readable documentation for this node. Markdown is allowed.
|
||||
optional string doc_string = 6;
|
||||
}
|
||||
|
||||
// Models
|
||||
//
|
||||
// ModelProto is a top-level file/container format for bundling a ML model and
|
||||
// associating its computation graph with metadata.
|
||||
//
|
||||
// The semantics of the model are described by the associated GraphProto.
|
||||
message ModelProto {
|
||||
// The version of the IR this model targets. See Version enum above.
|
||||
// This field MUST be present.
|
||||
optional int64 ir_version = 1;
|
||||
|
||||
// The OperatorSets this model relies on.
|
||||
// All ModelProtos MUST have at least one entry that
|
||||
// specifies which version of the ONNX OperatorSet is
|
||||
// being imported.
|
||||
//
|
||||
// All nodes in the ModelProto's graph will bind against the operator
|
||||
// with the same-domain/same-op_type operator with the HIGHEST version
|
||||
// in the referenced operator sets.
|
||||
repeated OperatorSetIdProto opset_import = 8;
|
||||
|
||||
// The name of the framework or tool used to generate this model.
|
||||
// This field SHOULD be present to indicate which implementation/tool/framework
|
||||
// emitted the model.
|
||||
optional string producer_name = 2;
|
||||
|
||||
// The version of the framework or tool used to generate this model.
|
||||
// This field SHOULD be present to indicate which implementation/tool/framework
|
||||
// emitted the model.
|
||||
optional string producer_version = 3;
|
||||
|
||||
// Domain name of the model.
|
||||
// We use reverse domain names as name space indicators. For example:
|
||||
// `com.facebook.fair` or `com.microsoft.cognitiveservices`
|
||||
//
|
||||
// Together with `model_version` and GraphProto.name, this forms the unique identity of
|
||||
// the graph.
|
||||
optional string domain = 4;
|
||||
|
||||
// The version of the graph encoded. See Version enum below.
|
||||
optional int64 model_version = 5;
|
||||
|
||||
// A human-readable documentation for this model. Markdown is allowed.
|
||||
optional string doc_string = 6;
|
||||
|
||||
// The parameterized graph that is evaluated to execute the model.
|
||||
optional GraphProto graph = 7;
|
||||
|
||||
// Named metadata values; keys should be distinct.
|
||||
repeated StringStringEntryProto metadata_props = 14;
|
||||
};
|
||||
|
||||
// StringStringEntryProto follows the pattern for cross-proto-version maps.
|
||||
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
|
||||
message StringStringEntryProto {
|
||||
optional string key = 1;
|
||||
optional string value= 2;
|
||||
};
|
||||
|
||||
message TensorAnnotation {
|
||||
optional string tensor_name = 1;
|
||||
// <key, value> pairs to annotate tensor specified by <tensor_name> above.
|
||||
// The keys used in the mapping below must be pre-defined in ONNX spec.
|
||||
// For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
|
||||
// quantization parameter keys.
|
||||
repeated StringStringEntryProto quant_parameter_tensor_names = 2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Graphs
|
||||
//
|
||||
// A graph defines the computational logic of a model and is comprised of a parameterized
|
||||
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
|
||||
// This is the equivalent of the "network" or "graph" in many deep learning
|
||||
// frameworks.
|
||||
message GraphProto {
|
||||
// The nodes in the graph, sorted topologically.
|
||||
repeated NodeProto node = 1;
|
||||
|
||||
// The name of the graph.
|
||||
optional string name = 2; // namespace Graph
|
||||
|
||||
// A list of named tensor values, used to specify constant inputs of the graph.
|
||||
// Each TensorProto entry must have a distinct name (within the list) that
|
||||
// MAY also appear in the input list.
|
||||
repeated TensorProto initializer = 5;
|
||||
|
||||
// Initializers (see above) stored in sparse format.
|
||||
repeated SparseTensorProto sparse_initializer = 15;
|
||||
|
||||
// A human-readable documentation for this graph. Markdown is allowed.
|
||||
optional string doc_string = 10;
|
||||
|
||||
// The inputs and outputs of the graph.
|
||||
repeated ValueInfoProto input = 11;
|
||||
repeated ValueInfoProto output = 12;
|
||||
|
||||
// Information for the values in the graph. The ValueInfoProto.name's
|
||||
// must be distinct. It is optional for a value to appear in value_info list.
|
||||
repeated ValueInfoProto value_info = 13;
|
||||
|
||||
// This field carries information to indicate the mapping among a tensor and its
|
||||
// quantization parameter tensors. For example:
|
||||
// For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
|
||||
// which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
|
||||
repeated TensorAnnotation quantization_annotation = 14;
|
||||
|
||||
// DO NOT USE the following fields, they were deprecated from earlier versions.
|
||||
// repeated string input = 3;
|
||||
// repeated string output = 4;
|
||||
// optional int64 ir_version = 6;
|
||||
// optional int64 producer_version = 7;
|
||||
// optional string producer_tag = 8;
|
||||
// optional string domain = 9;
|
||||
}
|
||||
|
||||
// Tensors
|
||||
//
|
||||
// A serialized tensor value.
|
||||
message TensorProto {
|
||||
enum DataType {
|
||||
UNDEFINED = 0;
|
||||
// Basic types.
|
||||
FLOAT = 1; // float
|
||||
UINT8 = 2; // uint8_t
|
||||
INT8 = 3; // int8_t
|
||||
UINT16 = 4; // uint16_t
|
||||
INT16 = 5; // int16_t
|
||||
INT32 = 6; // int32_t
|
||||
INT64 = 7; // int64_t
|
||||
STRING = 8; // string
|
||||
BOOL = 9; // bool
|
||||
|
||||
// IEEE754 half-precision floating-point format (16 bits wide).
|
||||
// This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
|
||||
FLOAT16 = 10;
|
||||
|
||||
DOUBLE = 11;
|
||||
UINT32 = 12;
|
||||
UINT64 = 13;
|
||||
COMPLEX64 = 14; // complex with float32 real and imaginary components
|
||||
COMPLEX128 = 15; // complex with float64 real and imaginary components
|
||||
|
||||
// Non-IEEE floating-point format based on IEEE754 single-precision
|
||||
// floating-point number truncated to 16 bits.
|
||||
// This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
|
||||
BFLOAT16 = 16;
|
||||
|
||||
// Future extensions go here.
|
||||
}
|
||||
|
||||
// The shape of the tensor.
|
||||
repeated int64 dims = 1;
|
||||
|
||||
// The data type of the tensor.
|
||||
// This field MUST have a valid TensorProto.DataType value
|
||||
optional int32 data_type = 2;
|
||||
|
||||
// For very large tensors, we may want to store them in chunks, in which
|
||||
// case the following fields will specify the segment that is stored in
|
||||
// the current TensorProto.
|
||||
message Segment {
|
||||
optional int64 begin = 1;
|
||||
optional int64 end = 2;
|
||||
}
|
||||
optional Segment segment = 3;
|
||||
|
||||
// Tensor content must be organized in row-major order.
|
||||
//
|
||||
// Depending on the data_type field, exactly one of the fields below with
|
||||
// name ending in _data is used to store the elements of the tensor.
|
||||
|
||||
// For float and complex64 values
|
||||
// Complex64 tensors are encoded as a single array of floats,
|
||||
// with the real components appearing in odd numbered positions,
|
||||
// and the corresponding imaginary component apparing in the
|
||||
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
|
||||
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
|
||||
// When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
|
||||
repeated float float_data = 4 [packed = true];
|
||||
|
||||
// For int32, uint8, int8, uint16, int16, bool, and float16 values
|
||||
// float16 values must be bit-wise converted to an uint16_t prior
|
||||
// to writing to the buffer.
|
||||
// When this field is present, the data_type field MUST be
|
||||
// INT32, INT16, INT8, UINT16, UINT8, BOOL, or FLOAT16
|
||||
repeated int32 int32_data = 5 [packed = true];
|
||||
|
||||
// For strings.
|
||||
// Each element of string_data is a UTF-8 encoded Unicode
|
||||
// string. No trailing null, no leading BOM. The protobuf "string"
|
||||
// scalar type is not used to match ML community conventions.
|
||||
// When this field is present, the data_type field MUST be STRING
|
||||
repeated bytes string_data = 6;
|
||||
|
||||
// For int64.
|
||||
// When this field is present, the data_type field MUST be INT64
|
||||
repeated int64 int64_data = 7 [packed = true];
|
||||
|
||||
// Optionally, a name for the tensor.
|
||||
optional string name = 8; // namespace Value
|
||||
|
||||
// A human-readable documentation for this tensor. Markdown is allowed.
|
||||
optional string doc_string = 12;
|
||||
|
||||
// Serializations can either use one of the fields above, or use this
|
||||
// raw bytes field. The only exception is the string case, where one is
|
||||
// required to store the content in the repeated bytes string_data field.
|
||||
//
|
||||
// When this raw_data field is used to store tensor value, elements MUST
|
||||
// be stored in as fixed-width, little-endian order.
|
||||
// Floating-point data types MUST be stored in IEEE 754 format.
|
||||
// Complex64 elements must be written as two consecutive FLOAT values, real component first.
|
||||
// Complex128 elements must be written as two consecutive DOUBLE values, real component first.
|
||||
// Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
|
||||
//
|
||||
// Note: the advantage of specific field rather than the raw_data field is
|
||||
// that in some cases (e.g. int data), protobuf does a better packing via
|
||||
// variable length storage, and may lead to smaller binary footprint.
|
||||
// When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
|
||||
optional bytes raw_data = 9;
|
||||
|
||||
// Data can be stored inside the protobuf file using type-specific fields or raw_data.
|
||||
// Alternatively, raw bytes data can be stored in an external file, using the external_data field.
|
||||
// external_data stores key-value pairs describing data location. Recognized keys are:
|
||||
// - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
|
||||
// protobuf model was stored
|
||||
// - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
|
||||
// Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
|
||||
// - "length" (optional) - number of bytes containing data. Integer stored as string.
|
||||
// - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
|
||||
repeated StringStringEntryProto external_data = 13;
|
||||
|
||||
// Location of the data for this tensor. MUST be one of:
|
||||
// - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field.
|
||||
// - EXTERNAL - data stored in an external location as described by external_data field.
|
||||
enum DataLocation {
|
||||
DEFAULT = 0;
|
||||
EXTERNAL = 1;
|
||||
}
|
||||
|
||||
// If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
|
||||
optional DataLocation data_location = 14;
|
||||
|
||||
// For double
|
||||
// Complex128 tensors are encoded as a single array of doubles,
|
||||
// with the real components appearing in odd numbered positions,
|
||||
// and the corresponding imaginary component apparing in the
|
||||
// subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
|
||||
// is encoded as [1.0, 2.0 ,3.0 ,4.0]
|
||||
// When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
|
||||
repeated double double_data = 10 [packed = true];
|
||||
|
||||
// For uint64 and uint32 values
|
||||
// When this field is present, the data_type field MUST be
|
||||
// UINT32 or UINT64
|
||||
repeated uint64 uint64_data = 11 [packed = true];
|
||||
}
|
||||
|
||||
// A serialized sparse-tensor value
|
||||
message SparseTensorProto {
|
||||
// The sequence of non-default values are encoded as a tensor of shape [NNZ].
|
||||
// The default-value is zero for numeric tensors, and empty-string for string tensors.
|
||||
optional TensorProto values = 1;
|
||||
|
||||
// The indices of the non-default values, which may be stored in one of two formats.
|
||||
// (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
|
||||
// corresponding to the j-th index of the i-th value (in the values tensor).
|
||||
// (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
|
||||
// must be the linearized-index of the i-th value (in the values tensor).
|
||||
// The linearized-index can be converted into an index tuple (k_1,...,k_rank)
|
||||
// using the shape provided below.
|
||||
// The indices must appear in ascending order without duplication.
|
||||
// In the first format, the ordering is lexicographic-ordering:
|
||||
// e.g., index-value [1,4] must appear before [2,1]
|
||||
optional TensorProto indices = 2;
|
||||
|
||||
// The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
|
||||
repeated int64 dims = 3;
|
||||
}
|
||||
|
||||
// Defines a tensor shape. A dimension can be either an integer value
|
||||
// or a symbolic variable. A symbolic variable represents an unknown
|
||||
// dimension.
|
||||
message TensorShapeProto {
|
||||
message Dimension {
|
||||
oneof value {
|
||||
int64 dim_value = 1;
|
||||
string dim_param = 2; // namespace Shape
|
||||
};
|
||||
// Standard denotation can optionally be used to denote tensor
|
||||
// dimensions with standard semantic descriptions to ensure
|
||||
// that operations are applied to the correct axis of a tensor.
|
||||
// Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition
|
||||
// for pre-defined dimension denotations.
|
||||
optional string denotation = 3;
|
||||
};
|
||||
repeated Dimension dim = 1;
|
||||
}
|
||||
|
||||
// Types
|
||||
//
|
||||
// The standard ONNX data types.
|
||||
message TypeProto {
|
||||
|
||||
message Tensor {
|
||||
// This field MUST NOT have the value of UNDEFINED
|
||||
// This field MUST have a valid TensorProto.DataType value
|
||||
// This field MUST be present for this version of the IR.
|
||||
optional int32 elem_type = 1;
|
||||
optional TensorShapeProto shape = 2;
|
||||
}
|
||||
|
||||
// repeated T
|
||||
message Sequence {
|
||||
// The type and optional shape of each element of the sequence.
|
||||
// This field MUST be present for this version of the IR.
|
||||
optional TypeProto elem_type = 1;
|
||||
};
|
||||
|
||||
// map<K,V>
|
||||
message Map {
|
||||
// This field MUST have a valid TensorProto.DataType value
|
||||
// This field MUST be present for this version of the IR.
|
||||
// This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
|
||||
optional int32 key_type = 1;
|
||||
// This field MUST be present for this version of the IR.
|
||||
optional TypeProto value_type = 2;
|
||||
};
|
||||
|
||||
|
||||
oneof value {
|
||||
// The type of a tensor.
|
||||
Tensor tensor_type = 1;
|
||||
|
||||
// NOTE: DNN-only implementations of ONNX MAY elect to not support non-tensor values
|
||||
// as input and output to graphs and nodes. These types are needed to naturally
|
||||
// support classical ML operators. DNN operators SHOULD restrict their input
|
||||
// and output types to tensors.
|
||||
|
||||
// The type of a sequence.
|
||||
Sequence sequence_type = 4;
|
||||
|
||||
// The type of a map.
|
||||
Map map_type = 5;
|
||||
|
||||
}
|
||||
|
||||
// An optional denotation can be used to denote the whole
|
||||
// type with a standard semantic description as to what is
|
||||
// stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition
|
||||
// for pre-defined type denotations.
|
||||
optional string denotation = 6;
|
||||
}
|
||||
|
||||
// Operator Sets
|
||||
//
|
||||
// OperatorSets are uniquely identified by a (domain, opset_version) pair.
|
||||
message OperatorSetIdProto {
|
||||
// The domain of the operator set being identified.
|
||||
// The empty string ("") or absence of this field implies the operator
|
||||
// set that is defined as part of the ONNX specification.
|
||||
// This field MUST be present in this version of the IR when referring to any other operator set.
|
||||
optional string domain = 1;
|
||||
|
||||
// The version of the operator set being identified.
|
||||
// This field MUST be present in this version of the IR.
|
||||
optional int64 version = 2;
|
||||
}
|
|
@ -0,0 +1,44 @@
|
|||
COPYRIGHT
|
||||
|
||||
All contributions by the University of California:
|
||||
Copyright (c) 2014-2017 The Regents of the University of California (Regents)
|
||||
All rights reserved.
|
||||
|
||||
All other contributions:
|
||||
Copyright (c) 2014-2017, the respective contributors
|
||||
All rights reserved.
|
||||
|
||||
Caffe uses a shared copyright model: each contributor holds copyright over
|
||||
their contributions to Caffe. The project versioning records all such
|
||||
contribution and copyright details. If a contributor wants to further mark
|
||||
their specific copyright on a particular contribution, they should indicate
|
||||
their copyright solely in the commit message of the change when it is
|
||||
committed.
|
||||
|
||||
LICENSE
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
CONTRIBUTION AGREEMENT
|
||||
|
||||
By contributing to the BVLC/caffe repository through pull-request, comment,
|
||||
or otherwise, the contributor releases their content to the
|
||||
license and copyright terms herein.
|
|
@ -0,0 +1,3 @@
|
|||
to support convert of third party model with caffe format, we heavily copied the proto file from https://github.com/BVLC/caffe, release 1.0
|
||||
|
||||
license notice of caffe was also copied, please see LICENSE under this floder.
|
|
@ -0,0 +1,203 @@
|
|||
Copyright 2019 The TensorFlow Authors. All rights reserved.
|
||||
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
|
@ -0,0 +1,3 @@
|
|||
to support convert of third party model with pb or tflite format, we heavily copied the proto files and schem file from https://github.com/tensorflow/tensorflow, release 2.4.1
|
||||
|
||||
license notice of tensorflow was also copied, please see LICENSE under this floder.
|
|
@ -1,15 +1,17 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "AttrValueProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
import "tensor.proto";
|
||||
import "tensor_shape.proto";
|
||||
import "types.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "AttrValueProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/attr_value_go_proto";
|
||||
|
||||
// Protocol buffer representing the value for an attr used to configure an Op.
|
||||
// Comment indicates the corresponding attr type. Only the field matching the
|
||||
// attr type may be filled.
|
||||
|
@ -43,7 +45,7 @@ message AttrValue {
|
|||
// that attr in the instantiation.
|
||||
NameAttrList func = 10;
|
||||
|
||||
// This is a placeholder only used in anf_node_map defined inside a
|
||||
// This is a placeholder only used in nodes defined inside a
|
||||
// function. It indicates the attr value will be supplied when
|
||||
// the function is instantiated. For example, let us suppose a
|
||||
// node "N" in function "FN". "N" has an attr "A" with value
|
|
@ -1,15 +1,17 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "FunctionProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
import "attr_value.proto";
|
||||
import "node_def.proto";
|
||||
import "op_def.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "FunctionProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/function_go_proto";
|
||||
|
||||
// A library is a set of named functions.
|
||||
message FunctionDefLibrary {
|
||||
repeated FunctionDef function = 1;
|
||||
|
@ -30,7 +32,26 @@ message FunctionDef {
|
|||
// Attributes specific to this function definition.
|
||||
map<string, AttrValue> attr = 5;
|
||||
|
||||
// NOTE: field id 2 deleted on Jan 11, 2016, GraphDef version 21.
|
||||
// Attributes for function arguments. These attributes are the same set of
|
||||
// valid attributes as to _Arg nodes.
|
||||
message ArgAttrs {
|
||||
map<string, AttrValue> attr = 1;
|
||||
}
|
||||
map<uint32, ArgAttrs> arg_attr = 7;
|
||||
|
||||
// Unique IDs for each resource argument, used to track aliasing resources. If
|
||||
// Argument A and Argument B alias each other, then
|
||||
// resource_arg_unique_ids[A.index] == resource_arg_unique_ids[B.index].
|
||||
//
|
||||
// If this field is empty, none of the arguments could alias; otherwise, every
|
||||
// resource argument should have an entry in this field.
|
||||
//
|
||||
// When instantiated, the unique IDs will be attached to the _Arg nodes'
|
||||
// "_resource_arg_unique_id" attribute.
|
||||
map<uint32, uint32> resource_arg_unique_id = 8;
|
||||
|
||||
// NOTE: field id 2 deleted on Jan 11, 2017, GraphDef version 21.
|
||||
reserved 2;
|
||||
|
||||
// In both of the following fields, there is the need to specify an
|
||||
// output that is used as either the input to another node (in
|
||||
|
@ -75,6 +96,10 @@ message FunctionDef {
|
|||
// A mapping from the output arg names from `signature` to the
|
||||
// outputs from `node_def` that should be returned by the function.
|
||||
map<string, string> ret = 4;
|
||||
|
||||
// A mapping from control output names from `signature` to node names in
|
||||
// `node_def` which should be control outputs of this function.
|
||||
map<string, string> control_ret = 6;
|
||||
}
|
||||
|
||||
// GradientDef defines the gradient function of a function defined in
|
|
@ -1,14 +1,16 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
|
||||
import "function.proto";
|
||||
import "node_def.proto";
|
||||
import "versions.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "GraphProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
import "node_def.proto";
|
||||
import "function.proto";
|
||||
import "versions.proto";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/graph_go_proto";
|
||||
|
||||
// Represents the graph of operations
|
||||
message GraphDef {
|
||||
|
@ -53,4 +55,4 @@ message GraphDef {
|
|||
// consumer does not start until all return values of the callee
|
||||
// function are ready.
|
||||
FunctionDefLibrary library = 2;
|
||||
};
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -1,17 +1,19 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
|
||||
import "attr_value.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "NodeProto";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
import "attr_value.proto";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/node_def_go_proto";
|
||||
|
||||
message NodeDef {
|
||||
// The name given to this operator. Used for naming inputs,
|
||||
// logging, visualization, etc. Unique within a single GraphDef.
|
||||
// Must match the regexp "[A-Za-z0-9.][A-Za-z0-9_./]*".
|
||||
// Must match the regexp "[A-Za-z0-9.][A-Za-z0-9_>./]*".
|
||||
string name = 1;
|
||||
|
||||
// The operation name. There may be custom parameters in attrs.
|
||||
|
@ -35,11 +37,11 @@ message NodeDef {
|
|||
// CONSTRAINT ::= ("job:" JOB_NAME)
|
||||
// | ("replica:" [1-9][0-9]*)
|
||||
// | ("task:" [1-9][0-9]*)
|
||||
// | ( ("gpu" | "cpu") ":" ([1-9][0-9]* | "*") )
|
||||
// | ("device:" [A-Za-z]* ":" ([1-9][0-9]* | "*") )
|
||||
//
|
||||
// Valid values for this string include:
|
||||
// * "/job:worker/replica:0/task:1/gpu:3" (full specification)
|
||||
// * "/job:worker/gpu:3" (partial specification)
|
||||
// * "/job:worker/replica:0/task:1/device:GPU:3" (full specification)
|
||||
// * "/job:worker/device:GPU:3" (partial specification)
|
||||
// * "" (no specification)
|
||||
//
|
||||
// If the constraints do not resolve to a single device (or if this
|
||||
|
@ -60,4 +62,27 @@ message NodeDef {
|
|||
// attr's type field.
|
||||
// TODO(josh11b): Add some examples here showing best practices.
|
||||
map<string, AttrValue> attr = 5;
|
||||
};
|
||||
|
||||
message ExperimentalDebugInfo {
|
||||
// Opaque string inserted into error messages created by the runtime.
|
||||
//
|
||||
// This is intended to store the list of names of the nodes from the
|
||||
// original graph that this node was derived. For example if this node, say
|
||||
// C, was result of a fusion of 2 nodes A and B, then 'original_node' would
|
||||
// be {A, B}. This information can be used to map errors originating at the
|
||||
// current node to some top level source code.
|
||||
repeated string original_node_names = 1;
|
||||
|
||||
// This is intended to store the list of names of the functions from the
|
||||
// original graph that this node was derived. For example if this node, say
|
||||
// C, was result of a fusion of node A in function FA and node B in function
|
||||
// FB, then `original_funcs` would be {FA, FB}. If the node is in the top
|
||||
// level graph, the `original_func` is empty. This information, with the
|
||||
// `original_node_names` can be used to map errors originating at the
|
||||
// current ndoe to some top level source code.
|
||||
repeated string original_func_names = 2;
|
||||
}
|
||||
|
||||
// This stores debug information associated with the node.
|
||||
ExperimentalDebugInfo experimental_debug_info = 6;
|
||||
}
|
|
@ -5,15 +5,16 @@ option cc_enable_arenas = true;
|
|||
option java_outer_classname = "OpDefProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/op_def_go_proto";
|
||||
import "attr_value.proto";
|
||||
import "types.proto";
|
||||
|
||||
// Defines an operation. A NodeDef in a GraphDef specifies an Op by
|
||||
// using the "op" field which should match the name of a OpDef.
|
||||
// LINT.IfChange
|
||||
message OpDef {
|
||||
// Op names starting with an underscore are reserved for internal use.
|
||||
// Names should be CamelCase and match the regexp "[A-Z][a-zA-Z0-9_]*".
|
||||
// Names should be CamelCase and match the regexp "[A-Z][a-zA-Z0-9>_]*".
|
||||
string name = 1;
|
||||
|
||||
// For describing inputs and outputs.
|
||||
|
@ -53,6 +54,10 @@ message OpDef {
|
|||
// Description of the output(s).
|
||||
repeated ArgDef output_arg = 3;
|
||||
|
||||
// Named control outputs for this operation. Useful only for composite
|
||||
// operations (i.e. functions) which want to name different control outputs.
|
||||
repeated string control_output = 20;
|
||||
|
||||
// Description of the graph-construction-time configuration of this
|
||||
// Op. That is to say, this describes the attr fields that will
|
||||
// be specified in the NodeDef.
|
||||
|
@ -125,6 +130,12 @@ message OpDef {
|
|||
// -------------------------------------------------------------------------
|
||||
// Optimization constraints.
|
||||
|
||||
// Ops are marked as stateful if their behavior depends on some state beyond
|
||||
// their input tensors (e.g. variable reading op) or if they have
|
||||
// a side-effect (e.g. printing or asserting ops). Equivalently, stateless ops
|
||||
// must always produce the same output for the same input and have
|
||||
// no side-effects.
|
||||
//
|
||||
// By default Ops may be moved between devices. Stateful ops should
|
||||
// either not be moved, or should only be moved if that state can also
|
||||
// be moved (e.g. via some sort of save / restore).
|
||||
|
@ -141,6 +152,8 @@ message OpDef {
|
|||
// input.
|
||||
bool allows_uninitialized_input = 19; // for Assign, etc.
|
||||
};
|
||||
// LINT.ThenChange(
|
||||
// https://www.tensorflow.org/code/tensorflow/core/framework/op_def_util.cc)
|
||||
|
||||
// Information about version-dependent deprecation of an op
|
||||
message OpDeprecation {
|
|
@ -1,10 +1,15 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
|
||||
import "tensor_shape.proto";
|
||||
import "types.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "ResourceHandle";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/resource_handle_go_proto";
|
||||
|
||||
// Protocol buffer representing a handle to a tensorflow resource. Handles are
|
||||
// not valid across executions, but can be serialized back and forth from within
|
||||
|
@ -26,4 +31,15 @@ message ResourceHandleProto {
|
|||
// For debug-only, the name of the type pointed to by this handle, if
|
||||
// available.
|
||||
string maybe_type_name = 5;
|
||||
};
|
||||
|
||||
// Protocol buffer representing a pair of (data type, tensor shape).
|
||||
message DtypeAndShape {
|
||||
DataType dtype = 1;
|
||||
TensorShapeProto shape = 2;
|
||||
}
|
||||
|
||||
// Data types and shapes for the underlying resource.
|
||||
repeated DtypeAndShape dtypes_and_shapes = 6;
|
||||
|
||||
reserved 7;
|
||||
}
|
|
@ -1,15 +1,17 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "TensorProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
|
||||
import "resource_handle.proto";
|
||||
import "tensor_shape.proto";
|
||||
import "types.proto";
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "TensorProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/tensor_go_proto";
|
||||
|
||||
// Protocol buffer representing a tensor.
|
||||
message TensorProto {
|
||||
DataType dtype = 1;
|
||||
|
@ -40,8 +42,8 @@ message TensorProto {
|
|||
// be set. The values hold the flattened representation of the tensor in
|
||||
// row major order.
|
||||
|
||||
// DT_HALF. Note that since protobuf has no int16 type, we'll have some
|
||||
// pointless zero padding for each value here.
|
||||
// DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll
|
||||
// have some pointless zero padding for each value here.
|
||||
repeated int32 half_val = 13 [packed = true];
|
||||
|
||||
// DT_FLOAT.
|
||||
|
@ -75,7 +77,13 @@ message TensorProto {
|
|||
|
||||
// DT_VARIANT
|
||||
repeated VariantTensorDataProto variant_val = 15;
|
||||
};
|
||||
|
||||
// DT_UINT32
|
||||
repeated uint32 uint32_val = 16 [packed = true];
|
||||
|
||||
// DT_UINT64
|
||||
repeated uint64 uint64_val = 17 [packed = true];
|
||||
}
|
||||
|
||||
// Protocol buffer representing the serialization format of DT_VARIANT tensors.
|
||||
message VariantTensorDataProto {
|
|
@ -5,6 +5,7 @@ option cc_enable_arenas = true;
|
|||
option java_outer_classname = "TensorShapeProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/tensor_shape_go_proto";
|
||||
|
||||
package tensorflow;
|
||||
|
|
@ -5,7 +5,9 @@ option cc_enable_arenas = true;
|
|||
option java_outer_classname = "TypesProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/types_go_proto";
|
||||
|
||||
// (== suppress_warning documentation-presence ==)
|
||||
// LINT.IfChange
|
||||
enum DataType {
|
||||
// Not a legal value for DataType. Used to indicate a DataType field
|
||||
|
@ -35,9 +37,8 @@ enum DataType {
|
|||
DT_HALF = 19;
|
||||
DT_RESOURCE = 20;
|
||||
DT_VARIANT = 21; // Arbitrary C++ data types
|
||||
|
||||
// TODO(josh11b): DT_GENERIC_PROTO = ??;
|
||||
// TODO(jeff,josh11b): DT_UINT64? DT_UINT32?
|
||||
DT_UINT32 = 22;
|
||||
DT_UINT64 = 23;
|
||||
|
||||
// Do not use! These are only for parameters. Every enum above
|
||||
// should have a corresponding value below (verified by types_test).
|
||||
|
@ -62,5 +63,25 @@ enum DataType {
|
|||
DT_HALF_REF = 119;
|
||||
DT_RESOURCE_REF = 120;
|
||||
DT_VARIANT_REF = 121;
|
||||
DT_UINT32_REF = 122;
|
||||
DT_UINT64_REF = 123;
|
||||
}
|
||||
// LINT.ThenChange(https://www.tensorflow.org/code/tensorflow/c/c_api.h,https://www.tensorflow.org/code/tensorflow/go/tensor.go)
|
||||
// LINT.ThenChange(
|
||||
// https://www.tensorflow.org/code/tensorflow/c/tf_datatype.h,
|
||||
// https://www.tensorflow.org/code/tensorflow/go/tensor.go,
|
||||
// https://www.tensorflow.org/code/tensorflow/core/framework/tensor.cc,
|
||||
// https://www.tensorflow.org/code/tensorflow/core/framework/types.h,
|
||||
// https://www.tensorflow.org/code/tensorflow/core/framework/types.cc,
|
||||
// https://www.tensorflow.org/code/tensorflow/python/framework/dtypes.py,
|
||||
// https://www.tensorflow.org/code/tensorflow/python/framework/function.py)
|
||||
|
||||
// For identifying the underlying type of a variant. For variants, the types
|
||||
// listed here are a subset of the types in the variant type registry,
|
||||
// corresponding to commonly used variants which must occasionally be
|
||||
// special-cased.
|
||||
enum SpecializedType {
|
||||
// Invalid/unknown specialized type.
|
||||
ST_INVALID = 0;
|
||||
// "tensorflow::TensorList" in the variant type registry.
|
||||
ST_TENSOR_LIST = 1;
|
||||
}
|
|
@ -1,10 +1,12 @@
|
|||
syntax = "proto3";
|
||||
|
||||
package tensorflow;
|
||||
|
||||
option cc_enable_arenas = true;
|
||||
option java_outer_classname = "VersionsProtos";
|
||||
option java_multiple_files = true;
|
||||
option java_package = "org.tensorflow.framework";
|
||||
option go_package = "github.com/tensorflow/tensorflow/tensorflow/go/core/framework/versions_go_proto";
|
||||
|
||||
// Version information for a piece of serialized data
|
||||
//
|
||||
|
@ -28,4 +30,4 @@ message VersionDef {
|
|||
|
||||
// Specific consumer versions which are disallowed (e.g. due to bugs).
|
||||
repeated int32 bad_consumers = 3;
|
||||
};
|
||||
}
|
Loading…
Reference in New Issue