forked from mindspore-Ecosystem/mindspore
!8101 [MS][LITE][Develop] modify CI cppcheck warning
Merge pull request !8101 from pengyongrong/stack
This commit is contained in:
commit
29697187e2
|
@ -39,7 +39,7 @@ __kernel void Sigmoid(__read_only image2d_t input, __write_only image2d_t output
|
||||||
const int last_c4) {
|
const int last_c4) {
|
||||||
int X = get_global_id(0);
|
int X = get_global_id(0);
|
||||||
int Y = get_global_id(1);
|
int Y = get_global_id(1);
|
||||||
if (X >= img_shape.x || Y >= img_shape.y) return;
|
if (X >= img_shape.x || Y >= img_shape.y || c4 == 0) return;
|
||||||
int C4 = X % c4;
|
int C4 = X % c4;
|
||||||
FLT4 in_c4 = READ_IMAGE(input, smp_zero, (int2)(X, Y));
|
FLT4 in_c4 = READ_IMAGE(input, smp_zero, (int2)(X, Y));
|
||||||
if (C4 < c4 - 1) {
|
if (C4 < c4 - 1) {
|
||||||
|
|
|
@ -30,9 +30,7 @@ __kernel void Convolution(__read_only image2d_t input, __write_only image2d_t ou
|
||||||
const int strideW = kernel_stride.w;
|
const int strideW = kernel_stride.w;
|
||||||
|
|
||||||
const int padTop = pad.x;
|
const int padTop = pad.x;
|
||||||
const int padBottom = pad.y;
|
|
||||||
const int padLeft = pad.z;
|
const int padLeft = pad.z;
|
||||||
const int padRight = pad.w;
|
|
||||||
|
|
||||||
const int dilationH = dilation.x;
|
const int dilationH = dilation.x;
|
||||||
const int dilationW = dilation.y;
|
const int dilationW = dilation.y;
|
||||||
|
@ -74,7 +72,7 @@ __kernel void Convolution(__read_only image2d_t input, __write_only image2d_t ou
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (bias) {
|
if (bias != 0) {
|
||||||
out_c4 = out_c4 + bias[co_slice];
|
out_c4 = out_c4 + bias[co_slice];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -116,7 +114,7 @@ __kernel void Winograd4x4To36(__read_only image2d_t input, __write_only image2d_
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
int IH = input_shape.y, IW = input_shape.z;
|
int IW = input_shape.z;
|
||||||
int TILE_X = UP_DIV(IW, 4);
|
int TILE_X = UP_DIV(IW, 4);
|
||||||
int tile_x = tile_xy % TILE_X;
|
int tile_x = tile_xy % TILE_X;
|
||||||
int tile_y = tile_xy / TILE_X;
|
int tile_y = tile_xy / TILE_X;
|
||||||
|
@ -229,7 +227,6 @@ __kernel void Winograd36To4x4(__read_only image2d_t input, __write_only image2d_
|
||||||
|
|
||||||
int TILE_XY = input_shape.z;
|
int TILE_XY = input_shape.z;
|
||||||
int SLICES = input_shape.w;
|
int SLICES = input_shape.w;
|
||||||
int OH = output_shape.y;
|
|
||||||
int OW = output_shape.z;
|
int OW = output_shape.z;
|
||||||
|
|
||||||
if (tile_xy >= TILE_XY || row >= 4 || slice >= SLICES) {
|
if (tile_xy >= TILE_XY || row >= 4 || slice >= SLICES) {
|
||||||
|
@ -257,7 +254,7 @@ __kernel void Winograd36To4x4(__read_only image2d_t input, __write_only image2d_
|
||||||
acc += AtM_row[y] * At[idx];
|
acc += AtM_row[y] * At[idx];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (bias) {
|
if (bias != 0) {
|
||||||
acc += bias[slice];
|
acc += bias[slice];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -51,13 +51,10 @@ __kernel void reshape_NC4HW4(__read_only image2d_t src_data, __write_only image2
|
||||||
int4 dst_size) {
|
int4 dst_size) {
|
||||||
int X = get_global_id(0);
|
int X = get_global_id(0);
|
||||||
int Y = get_global_id(1);
|
int Y = get_global_id(1);
|
||||||
int CO4 = UP_DIV(dst_size.z, C4NUM);
|
|
||||||
int CO4_rem = dst_size.z % C4NUM;
|
|
||||||
if (X >= dst_size.x || Y > dst_size.y) {
|
if (X >= dst_size.x || Y > dst_size.y) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
int CI4 = UP_DIV(src_size.x, C4NUM);
|
int CI4 = UP_DIV(src_size.x, C4NUM);
|
||||||
int CI4_rem = src_size.x % C4NUM;
|
|
||||||
int in_img_x = CI4 * src_size.y;
|
int in_img_x = CI4 * src_size.y;
|
||||||
int gcnt = X + dst_size.x * Y;
|
int gcnt = X + dst_size.x * Y;
|
||||||
WRITE_IMAGE(dst_data, (int2)(X, Y), READ_IMAGE(src_data, smp_zero, (int2)(gcnt % in_img_x, gcnt / in_img_x)));
|
WRITE_IMAGE(dst_data, (int2)(X, Y), READ_IMAGE(src_data, smp_zero, (int2)(gcnt % in_img_x, gcnt / in_img_x)));
|
||||||
|
|
|
@ -43,8 +43,8 @@ std::vector<float> SoftmaxOpenCLKernel::GetMaskForLastChannel(int channels) {
|
||||||
}
|
}
|
||||||
|
|
||||||
int SoftmaxOpenCLKernel::InitGlobalSize() {
|
int SoftmaxOpenCLKernel::InitGlobalSize() {
|
||||||
size_t global_x, global_y, global_z;
|
size_t global_x, global_y;
|
||||||
global_z = 1;
|
const size_t global_z = 1;
|
||||||
if (axis_ == 1) {
|
if (axis_ == 1) {
|
||||||
global_x = UP_DIV(nhwc_shape_[3], C4NUM);
|
global_x = UP_DIV(nhwc_shape_[3], C4NUM);
|
||||||
global_y = nhwc_shape_[2];
|
global_y = nhwc_shape_[2];
|
||||||
|
|
|
@ -38,7 +38,7 @@ struct OpenCLToFormatParameter {
|
||||||
|
|
||||||
struct Image2DInfo {
|
struct Image2DInfo {
|
||||||
explicit Image2DInfo(const lite::Tensor *tensor) {
|
explicit Image2DInfo(const lite::Tensor *tensor) {
|
||||||
if (tensor) {
|
if (tensor != nullptr) {
|
||||||
auto shape = tensor->shape();
|
auto shape = tensor->shape();
|
||||||
if (shape.size() == 1) {
|
if (shape.size() == 1) {
|
||||||
N = shape[0];
|
N = shape[0];
|
||||||
|
|
Loading…
Reference in New Issue