!4322 Adding RGBA color conversion

Merge pull request !4322 from EricZ/bitmap_support
This commit is contained in:
mindspore-ci-bot 2020-08-14 01:58:33 +08:00 committed by Gitee
commit 2953720169
14 changed files with 564 additions and 170 deletions

View File

@ -35,6 +35,8 @@
#include "minddata/dataset/kernels/image/random_solarize_op.h"
#include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
#include "minddata/dataset/kernels/image/resize_op.h"
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
#include "minddata/dataset/kernels/image/swap_red_blue_op.h"
#include "minddata/dataset/kernels/image/uniform_aug_op.h"
@ -240,6 +242,26 @@ std::shared_ptr<ResizeOperation> Resize(std::vector<int32_t> size, Interpolation
return op;
}
// Function to create RgbaToBgrOperation.
std::shared_ptr<RgbaToBgrOperation> RGBA2BGR() {
auto op = std::make_shared<RgbaToBgrOperation>();
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create RgbaToRgbOperation.
std::shared_ptr<RgbaToRgbOperation> RGBA2RGB() {
auto op = std::make_shared<RgbaToRgbOperation>();
// Input validation
if (!op->ValidateParams()) {
return nullptr;
}
return op;
}
// Function to create SwapRedBlueOperation.
std::shared_ptr<SwapRedBlueOperation> SwapRedBlue() {
auto op = std::make_shared<SwapRedBlueOperation>();
@ -743,6 +765,26 @@ std::shared_ptr<TensorOp> ResizeOperation::Build() {
return std::make_shared<ResizeOp>(height, width, interpolation_);
}
// RgbaToBgrOperation.
RgbaToBgrOperation::RgbaToBgrOperation() {}
bool RgbaToBgrOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RgbaToBgrOperation::Build() {
std::shared_ptr<RgbaToBgrOp> tensor_op = std::make_shared<RgbaToBgrOp>();
return tensor_op;
}
// RgbaToRgbOperation.
RgbaToRgbOperation::RgbaToRgbOperation() {}
bool RgbaToRgbOperation::ValidateParams() { return true; }
std::shared_ptr<TensorOp> RgbaToRgbOperation::Build() {
std::shared_ptr<RgbaToRgbOp> tensor_op = std::make_shared<RgbaToRgbOp>();
return tensor_op;
}
// SwapRedBlueOperation.
SwapRedBlueOperation::SwapRedBlueOperation() {}

View File

@ -65,14 +65,16 @@ class RandomSharpnessOperation;
class RandomSolarizeOperation;
class RandomVerticalFlipOperation;
class ResizeOperation;
class RgbaToBgrOperation;
class RgbaToRgbOperation;
class SwapRedBlueOperation;
class UniformAugOperation;
/// \brief Function to create a CenterCrop TensorOperation.
/// \notes Crops the input image at the center to the given size.
/// \param[in] size - a vector representing the output size of the cropped image.
/// If size is a single value, a square crop of size (size, size) is returned.
/// If size has 2 values, it should be (height, width).
/// If size is a single value, a square crop of size (size, size) is returned.
/// If size has 2 values, it should be (height, width).
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size);
@ -103,15 +105,15 @@ std::shared_ptr<HwcToChwOperation> HWC2CHW();
/// \brief Function to create a MixUpBatch TensorOperation.
/// \notes Apply MixUp transformation on an input batch of images and labels. The labels must be in one-hot format and
/// Batch must be called before calling this function.
/// Batch must be called before calling this function.
/// \param[in] alpha hyperparameter of beta distribution (default = 1.0)
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<MixUpBatchOperation> MixUpBatch(float alpha = 1);
/// \brief Function to create a Normalize TensorOperation.
/// \notes Normalize the input image with respect to mean and standard deviation.
/// \param[in] mean - a vector of mean values for each channel, w.r.t channel order.
/// \param[in] std - a vector of standard deviations for each channel, w.r.t. channel order.
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std);
@ -230,8 +232,18 @@ std::shared_ptr<RandomSolarizeOperation> RandomSolarize(uint8_t threshold_min =
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<RandomVerticalFlipOperation> RandomVerticalFlip(float prob = 0.5);
/// \brief Function to create a RgbaToBgr TensorOperation.
/// \notes Changes the input 4 channel RGBA tensor to 3 channel BGR.
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<RgbaToBgrOperation> RGBA2BGR();
/// \brief Function to create a RgbaToRgb TensorOperation.
/// \notes Changes the input 4 channel RGBA tensor to 3 channel RGB.
/// \return Shared pointer to the current TensorOperation.
std::shared_ptr<RgbaToRgbOperation> RGBA2RGB();
/// \brief Function to create a Resize TensorOperation.
/// \notes Resize the input image to the given size..
/// \notes Resize the input image to the given size.
/// \param[in] size - a vector representing the output size of the resized image.
/// If size is a single value, the image will be resized to this value with
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
@ -520,6 +532,28 @@ class ResizeOperation : public TensorOperation {
InterpolationMode interpolation_;
};
class RgbaToBgrOperation : public TensorOperation {
public:
RgbaToBgrOperation();
~RgbaToBgrOperation() = default;
std::shared_ptr<TensorOp> Build() override;
bool ValidateParams() override;
};
class RgbaToRgbOperation : public TensorOperation {
public:
RgbaToRgbOperation();
~RgbaToRgbOperation() = default;
std::shared_ptr<TensorOp> Build() override;
bool ValidateParams() override;
};
class UniformAugOperation : public TensorOperation {
public:
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops = 2);

View File

@ -36,6 +36,8 @@ add_library(kernels-image OBJECT
rescale_op.cc
resize_bilinear_op.cc
resize_op.cc
rgba_to_bgr_op.cc
rgba_to_rgb_op.cc
sharpness_op.cc
solarize_op.cc
swap_red_blue_op.cc

View File

@ -856,6 +856,44 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output
RETURN_STATUS_UNEXPECTED("Unexpected error in pad");
}
}
Status RgbaToRgb(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
try {
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
int num_channels = input_cv->shape()[2];
if (input_cv->shape().Size() != 3 || num_channels != 4) {
std::string err_msg = "Number of channels does not equal 4, got : " + std::to_string(num_channels);
RETURN_STATUS_UNEXPECTED(err_msg);
}
TensorShape out_shape = TensorShape({input_cv->shape()[0], input_cv->shape()[1], 3});
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(out_shape, input_cv->type(), &output_cv));
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_RGBA2RGB));
*output = std::static_pointer_cast<Tensor>(output_cv);
return Status::OK();
} catch (const cv::Exception &e) {
RETURN_STATUS_UNEXPECTED("Unexpected error in RgbaToRgb.");
}
}
Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
try {
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
int num_channels = input_cv->shape()[2];
if (input_cv->shape().Size() != 3 || num_channels != 4) {
std::string err_msg = "Number of channels does not equal 4, got : " + std::to_string(num_channels);
RETURN_STATUS_UNEXPECTED(err_msg);
}
TensorShape out_shape = TensorShape({input_cv->shape()[0], input_cv->shape()[1], 3});
std::shared_ptr<CVTensor> output_cv;
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(out_shape, input_cv->type(), &output_cv));
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_RGBA2BGR));
*output = std::static_pointer_cast<Tensor>(output_cv);
return Status::OK();
} catch (const cv::Exception &e) {
RETURN_STATUS_UNEXPECTED("Unexpected error in RgbaToBgr.");
}
}
// -------- BBOX OPERATIONS -------- //
Status UpdateBBoxesForCrop(std::shared_ptr<Tensor> *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax,
int CB_Ymax) {

View File

@ -44,50 +44,50 @@ struct JpegErrorManagerCustom {
jmp_buf setjmp_buffer;
};
// Returns the interpolation mode in openCV format
// @param mode: interpolation mode in DE format
/// \brief Returns the interpolation mode in openCV format
/// \param[in] mode Interpolation mode in DE format
int GetCVInterpolationMode(InterpolationMode mode);
// Returns the openCV equivalent of the border type used for padding.
// @param type
// @return
/// \brief Returns the openCV equivalent of the border type used for padding.
/// \param type
/// \return Status code
int GetCVBorderType(BorderType type);
// Returns flipped image
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param flip_code: 1 for Horizontal (around y-axis), 0 for Vertical (around x-axis), -1 for both
// The flipping happens in place.
/// \brief Returns flipped image
/// \param[in] input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param flip_code: 1 for Horizontal (around y-axis), 0 for Vertical (around x-axis), -1 for both
/// The flipping happens in place.
Status Flip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output, int flip_code);
// Returns Horizontally flipped image
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// The flipping happens in place.
/// \brief Returns Horizontally flipped image
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// The flipping happens in place.
Status HorizontalFlip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
// Returns Vertically flipped image
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// The flipping happens in place.
/// \brief Returns Vertically flipped image
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \note The flipping happens in place.
Status VerticalFlip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
// Returns Resized image.
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param output_height: height of output
// @param output_width: width of output
// @param fx: horizontal scale
// @param fy: vertical scale
// @param InterpolationMode: the interpolation mode
// @param output: Resized image of shape <outputHeight,outputWidth,C> or <outputHeight,outputWidth>
// and same type as input
/// \brief Returns Resized image.
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param output_height: height of output
/// \param output_width: width of output
/// \param fx: horizontal scale
/// \param fy: vertical scale
/// \param InterpolationMode: the interpolation mode
/// \param output: Resized image of shape <outputHeight,outputWidth,C> or <outputHeight,outputWidth>
/// and same type as input
Status Resize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t output_height,
int32_t output_width, double fx = 0.0, double fy = 0.0,
InterpolationMode mode = InterpolationMode::kLinear);
// Returns Decoded image
// Supported images:
// BMP JPEG JPG PNG TIFF
// supported by opencv, if user need more image analysis capabilities, please compile opencv particularlly.
// @param input: CVTensor containing the not decoded image 1D bytes
// @param output: Decoded image Tensor of shape <H,W,C> and type DE_UINT8. Pixel order is RGB
/// \brief Returns Decoded image
/// Supported images:
/// BMP JPEG JPG PNG TIFF
/// supported by opencv, if user need more image analysis capabilities, please compile opencv particularlly.
/// \param input: CVTensor containing the not decoded image 1D bytes
/// \param output: Decoded image Tensor of shape <H,W,C> and type DE_UINT8. Pixel order is RGB
Status Decode(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
Status DecodeCv(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
@ -98,106 +98,107 @@ void JpegSetSource(j_decompress_ptr c_info, const void *data, int64_t data_size)
Status JpegCropAndDecode(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x = 0, int y = 0,
int w = 0, int h = 0);
// Returns Rescaled image
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param rescale: rescale parameter
// @param shift: shift parameter
// @param output: Rescaled image Tensor of same input shape and type DE_FLOAT32
/// \brief Returns Rescaled image
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param rescale: rescale parameter
/// \param shift: shift parameter
/// \param output: Rescaled image Tensor of same input shape and type DE_FLOAT32
Status Rescale(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float rescale, float shift);
// Returns cropped ROI of an image
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param x: starting horizontal position of ROI
// @param y: starting vertical position of ROI
// @param w: width of the ROI
// @param h: height of the ROI
// @param output: Cropped image Tensor of shape <h,w,C> or <h,w> and same input type.
/// \brief Returns cropped ROI of an image
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param x: starting horizontal position of ROI
/// \param y: starting vertical position of ROI
/// \param w: width of the ROI
/// \param h: height of the ROI
/// \param output: Cropped image Tensor of shape <h,w,C> or <h,w> and same input type.
Status Crop(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x, int y, int w, int h);
// Swaps the channels in the image, i.e. converts HWC to CHW
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param output: Tensor of shape <C,H,W> or <H,W> and same input type.
/// \brief Swaps the channels in the image, i.e. converts HWC to CHW
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param output: Tensor of shape <C,H,W> or <H,W> and same input type.
Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
// Swap the red and blue pixels (RGB <-> BGR)
// @param input: Tensor of shape <H,W,3> and any OpenCv compatible type, see CVTensor.
// @param output: Swapped image of same shape and type
/// \brief Swap the red and blue pixels (RGB <-> BGR)
/// \param input: Tensor of shape <H,W,3> and any OpenCv compatible type, see CVTensor.
/// \param output: Swapped image of same shape and type
Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
// Crops and resizes the image
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param x: horizontal start point
// @param y: vertical start point
// @param crop_height: height of the cropped ROI
// @param crop_width: width of the cropped ROI
// @param target_width: width of the final resized image
// @param target_height: height of the final resized image
// @param InterpolationMode: the interpolation used in resize operation
// @param output: Tensor of shape <targetHeight,targetWidth,C> or <targetHeight,targetWidth>
// and same type as input
/// \brief Crops and resizes the image
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param x: horizontal start point
/// \param y: vertical start point
/// \param crop_height: height of the cropped ROI
/// \param crop_width: width of the cropped ROI
/// \param target_width: width of the final resized image
/// \param target_height: height of the final resized image
/// \param InterpolationMode: the interpolation used in resize operation
/// \param output: Tensor of shape <targetHeight,targetWidth,C> or <targetHeight,targetWidth>
/// and same type as input
Status CropAndResize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x, int y,
int crop_height, int crop_width, int target_height, int target_width, InterpolationMode mode);
// Returns rotated image
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
// @param fx: rotation center x coordinate
// @param fy: rotation center y coordinate
// @param degree: degree to rotate
// @param expand: if reshape is necessary
// @param output: rotated image of same input type.
/// \brief Returns rotated image
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
/// \param fx: rotation center x coordinate
/// \param fy: rotation center y coordinate
/// \param degree: degree to rotate
/// \param expand: if reshape is necessary
/// \param output: rotated image of same input type.
Status Rotate(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float fx, float fy, float degree,
InterpolationMode interpolation = InterpolationMode::kNearestNeighbour, bool expand = false,
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
// Returns Normalized image
// @param input: Tensor of shape <H,W,C> in RGB order and any OpenCv compatible type, see CVTensor.
// @param mean: Tensor of shape <3> and type DE_FLOAT32 which are mean of each channel in RGB order
// @param std: Tensor of shape <3> and type DE_FLOAT32 which are std of each channel in RGB order
// @param output: Normalized image Tensor of same input shape and type DE_FLOAT32
/// \brief Returns Normalized image
/// \param input: Tensor of shape <H,W,C> in RGB order and any OpenCv compatible type, see CVTensor.
/// \param mean: Tensor of shape <3> and type DE_FLOAT32 which are mean of each channel in RGB order
/// \param std: Tensor of shape <3> and type DE_FLOAT32 which are std of each channel in RGB order
/// \param output: Normalized image Tensor of same input shape and type DE_FLOAT32
Status Normalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output,
const std::shared_ptr<Tensor> &mean, const std::shared_ptr<Tensor> &std);
// Returns image with adjusted brightness.
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
// @param alpha: Alpha value to adjust brightness by. Should be a positive number.
// If user input one value in python, the range is [1 - value, 1 + value].
// This will output original image multiplied by alpha. 0 gives a black image, 1 gives the
// original image while 2 increases the brightness by a factor of 2.
// @param output: Adjusted image of same shape and type.
/// \brief Returns image with adjusted brightness.
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
/// \param alpha: Alpha value to adjust brightness by. Should be a positive number.
/// If user input one value in python, the range is [1 - value, 1 + value].
/// This will output original image multiplied by alpha. 0 gives a black image, 1 gives the
/// original image while 2 increases the brightness by a factor of 2.
/// \param output: Adjusted image of same shape and type.
Status AdjustBrightness(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
// Returns image with adjusted contrast.
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
// @param alpha: Alpha value to adjust contrast by. Should be a positive number.
// If user input one value in python, the range is [1 - value, 1 + value].
// 0 gives a solid gray image, 1 gives the original image while 2 increases
// the contrast by a factor of 2.
// @param output: Adjusted image of same shape and type.
/// \brief Returns image with adjusted contrast.
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
/// \param alpha: Alpha value to adjust contrast by. Should be a positive number.
/// If user input one value in python, the range is [1 - value, 1 + value].
/// 0 gives a solid gray image, 1 gives the original image while 2 increases
/// the contrast by a factor of 2.
/// \param output: Adjusted image of same shape and type.
Status AdjustContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
// Returns image with contrast maximized.
// @param input: Tensor of shape <H,W,3>/<H,W,1>/<H,W> in RGB/Grayscale and any OpenCv compatible type, see CVTensor.
// @param cutoff: Cutoff percentage of how many pixels are to be removed (high pixels change to 255 and low change to 0)
// from the high and low ends of the histogram.
// @param ignore: Pixel values to be ignored in the algorithm.
/// \brief Returns image with contrast maximized.
/// \param input: Tensor of shape <H,W,3>/<H,W,1>/<H,W> in RGB/Grayscale and any OpenCv compatible type, see CVTensor.
/// \param cutoff: Cutoff percentage of how many pixels are to be removed (high pixels change to 255 and low change
/// to 0) from the high and low ends of the histogram.
/// \param ignore: Pixel values to be ignored in the algorithm.
Status AutoContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &cutoff,
const std::vector<uint32_t> &ignore);
// Returns image with adjusted saturation.
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
// @param alpha: Alpha value to adjust saturation by. Should be a positive number.
// If user input one value in python, the range is [1 - value, 1 + value].
// 0 will give a black and white image, 1 will give the original image while
// 2 will enhance the saturation by a factor of 2.
// @param output: Adjusted image of same shape and type.
/// \brief Returns image with adjusted saturation.
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
/// \param alpha: Alpha value to adjust saturation by. Should be a positive number.
/// If user input one value in python, the range is [1 - value, 1 + value].
/// 0 will give a black and white image, 1 will give the original image while
/// 2 will enhance the saturation by a factor of 2.
/// \param output: Adjusted image of same shape and type.
Status AdjustSaturation(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
// Returns image with adjusted hue.
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
// @param hue: Hue value to adjust by, should be within range [-0.5, 0.5]. 0.5 and - 0.5 will reverse the hue channel
// completely.
// If user input one value in python, the range is [-value, value].
// @param output: Adjusted image of same shape and type.
/// \brief Returns image with adjusted hue.
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
/// \param hue: Hue value to adjust by, should be within range [-0.5, 0.5]. 0.5 and - 0.5 will reverse the hue channel
/// completely.
/// If user input one value in python, the range is [-value, value].
/// \param output: Adjusted image of same shape and type.
Status AdjustHue(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &hue);
/// \brief Returns image with equalized histogram.
@ -206,72 +207,84 @@ Status AdjustHue(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
/// \param[out] output: Equalized image of same shape and type.
Status Equalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
// Masks out a random section from the image with set dimension
// @param input: input Tensor
// @param output: cutOut Tensor
// @param box_height: height of the cropped box
// @param box_width: width of the cropped box
// @param num_patches: number of boxes to cut out from the image
// @param bounded: boolean flag to toggle between random erasing and cutout
// @param random_color: whether or not random fill value should be used
// @param fill_r: red fill value for erase
// @param fill_g: green fill value for erase
// @param fill_b: blue fill value for erase.
/// \brief Masks out a random section from the image with set dimension
/// \param input: input Tensor
/// \param output: cutOut Tensor
/// \param box_height: height of the cropped box
/// \param box_width: width of the cropped box
/// \param num_patches: number of boxes to cut out from the image
/// \param bounded: boolean flag to toggle between random erasing and cutout
/// \param random_color: whether or not random fill value should be used
/// \param fill_r: red fill value for erase
/// \param fill_g: green fill value for erase
/// \param fill_b: blue fill value for erase.
Status Erase(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t box_height,
int32_t box_width, int32_t num_patches, bool bounded, bool random_color, std::mt19937 *rnd,
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
// Pads the input image and puts the padded image in the output
// @param input: input Tensor
// @param output: padded Tensor
// @param pad_top: amount of padding done in top
// @param pad_bottom: amount of padding done in bottom
// @param pad_left: amount of padding done in left
// @param pad_right: amount of padding done in right
// @param border_types: the interpolation to be done in the border
// @param fill_r: red fill value for pad
// @param fill_g: green fill value for pad
// @param fill_b: blue fill value for pad.
/// \brief Pads the input image and puts the padded image in the output
/// \param input: input Tensor
/// \param output: padded Tensor
/// \param pad_top: amount of padding done in top
/// \param pad_bottom: amount of padding done in bottom
/// \param pad_left: amount of padding done in left
/// \param pad_right: amount of padding done in right
/// \param border_types: the interpolation to be done in the border
/// \param fill_r: red fill value for pad
/// \param fill_g: green fill value for pad
/// \param fill_b: blue fill value for pad.
Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const int32_t &pad_top,
const int32_t &pad_bottom, const int32_t &pad_left, const int32_t &pad_right, const BorderType &border_types,
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
// -------- BBOX OPERATIONS -------- //
// Updates and checks bounding boxes for new cropped region of image
// @param bboxList: A tensor contaning bounding box tensors
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
// @param CB_Xmin: Image's CropBox Xmin coordinate
// @param CB_Xmin: Image's CropBox Ymin coordinate
// @param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width)
// @param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height)
/// \brief Take in a 4 channel image in RBGA to RGB
/// \param[in] input The input image
/// \param[out] output The output image
/// \return Status code
Status RgbaToRgb(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
/// \brief Take in a 4 channel image in RBGA to BGR
/// \param[in] input The input image
/// \param[out] output The output image
/// \return Status code
Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
/// -------- BBOX OPERATIONS -------- ///
/// \brief Updates and checks bounding boxes for new cropped region of image
/// \param bboxList: A tensor contaning bounding box tensors
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
/// \param CB_Xmin: Image's CropBox Xmin coordinate
/// \param CB_Xmin: Image's CropBox Ymin coordinate
/// \param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width)
/// \param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height)
Status UpdateBBoxesForCrop(std::shared_ptr<Tensor> *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax,
int CB_Ymax);
// Updates bounding boxes with required Top and Left padding
// Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push'
// Top/Left since images 0,0 coordinate is taken from top left
// @param bboxList: A tensor contaning bounding box tensors
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
// @param pad_top: Total amount of padding applied to image top
// @param pad_left: Total amount of padding applied to image left side
/// \brief Updates bounding boxes with required Top and Left padding
/// \note Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push'
/// Top/Left since images 0,0 coordinate is taken from top left
/// \param bboxList: A tensor contaning bounding box tensors
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
/// \param pad_top: Total amount of padding applied to image top
/// \param pad_left: Total amount of padding applied to image left side
Status PadBBoxes(const std::shared_ptr<Tensor> *bboxList, const size_t &bboxCount, int32_t pad_top, int32_t pad_left);
// Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes
// For e.g those that remain after a crop
// @param bboxList: A tensor contaning bounding box tensors
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
// @param bboxList: A tensor contaning bounding box tensors
// @param target_width_: required width of image post resize
// @param target_width_: required height of image post resize
// @param orig_width: current width of image pre resize
// @param orig_height: current height of image pre resize
/// \brief Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes
/// For e.g those that remain after a crop
/// \param bboxList: A tensor contaning bounding box tensors
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
/// \param bboxList: A tensor contaning bounding box tensors
/// \param target_width_: required width of image post resize
/// \param target_width_: required height of image post resize
/// \param orig_width: current width of image pre resize
/// \param orig_height: current height of image pre resize
Status UpdateBBoxesForResize(const std::shared_ptr<Tensor> &bboxList, const size_t &bboxCount, int32_t target_width_,
int32_t target_height_, int orig_width, int orig_height);
// Get jpeg image width and height
// @param input: CVTensor containing the not decoded image 1D bytes
// @param img_width: the jpeg image width
// @param img_height: the jpeg image height
/// \brief Get jpeg image width and height
/// \param input: CVTensor containing the not decoded image 1D bytes
/// \param img_width: the jpeg image width
/// \param img_height: the jpeg image height
Status GetJpegImageInfo(const std::shared_ptr<Tensor> &input, int *img_width, int *img_height);
} // namespace dataset

View File

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
#include "minddata/dataset/kernels/image/image_utils.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
Status RgbaToBgrOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
return RgbaToBgr(input, output);
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,43 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_
#include <memory>
#include <vector>
#include <string>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/kernels/image/image_utils.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
class RgbaToBgrOp : public TensorOp {
public:
RgbaToBgrOp() {}
~RgbaToBgrOp() override = default;
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
std::string Name() const override { return kRgbaToBgrOp; }
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_

View File

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
#include "minddata/dataset/kernels/image/image_utils.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
Status RgbaToRgbOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
IO_CHECK(input, output);
return RgbaToRgb(input, output);
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,43 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_
#include <memory>
#include <vector>
#include <string>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/kernels/image/image_utils.h"
#include "minddata/dataset/kernels/tensor_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
class RgbaToRgbOp : public TensorOp {
public:
RgbaToRgbOp() {}
~RgbaToRgbOp() override = default;
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
std::string Name() const override { return kRgbaToRgbOp; }
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_

View File

@ -29,14 +29,7 @@ namespace mindspore {
namespace dataset {
class SwapRedBlueOp : public TensorOp {
public:
// SwapRedBlues the image to the output specified size. If only one value is provided,
// the it will crop the smaller size and maintains the aspect ratio.
// @param size1: the first size of output. If only this parameter is provided
// the smaller dimension will be cropd to this and then the other dimension changes
// such that the aspect ratio is maintained.
// @param size2: the second size of output. If this is also provided, the output size
// will be (size1, size2)
// @param InterpolationMode: the interpolation mode being used.
/// \brief Constructor
SwapRedBlueOp() {}
SwapRedBlueOp(const SwapRedBlueOp &rhs) = default;
@ -45,7 +38,7 @@ class SwapRedBlueOp : public TensorOp {
~SwapRedBlueOp() override = default;
void Print(std::ostream &out) const override { out << "SwapRedBlueOp x"; }
void Print(std::ostream &out) const override { out << "SwapRedBlueOp"; }
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;

View File

@ -121,8 +121,10 @@ constexpr char kRescaleOp[] = "RescaleOp";
constexpr char kResizeBilinearOp[] = "ResizeBilinearOp";
constexpr char kResizeOp[] = "ResizeOp";
constexpr char kResizeWithBBoxOp[] = "ResizeWithBBoxOp";
constexpr char kSolarizeOp[] = "SolarizeOp";
constexpr char kRgbaToBgrOp[] = "RgbaToBgrOp";
constexpr char kRgbaToRgbOp[] = "RgbaToRgbOp";
constexpr char kSharpnessOp[] = "SharpnessOp";
constexpr char kSolarizeOp[] = "SolarizeOp";
constexpr char kSwapRedBlueOp[] = "SwapRedBlueOp";
constexpr char kUniformAugOp[] = "UniformAugOp";
constexpr char kSoftDvppDecodeRandomCropResizeJpegOp[] = "SoftDvppDecodeRandomCropResizeJpegOp";

View File

@ -55,12 +55,14 @@ SET(DE_UT_SRCS
random_vertical_flip_with_bbox_op_test.cc
rename_op_test.cc
repeat_op_test.cc
skip_op_test.cc
rescale_op_test.cc
resize_bilinear_op_test.cc
resize_op_test.cc
resize_with_bbox_op_test.cc
rgba_to_bgr_op_test.cc
rgba_to_rgb_op_test.cc
schema_test.cc
skip_op_test.cc
shuffle_op_test.cc
stand_alone_samplers_test.cc
status_test.cc

View File

@ -0,0 +1,62 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <opencv2/imgcodecs.hpp>
#include "common/common.h"
#include "common/cvop_common.h"
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
#include "minddata/dataset/core/cv_tensor.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestRgbaToBgrOp : public UT::CVOP::CVOpCommon {
protected:
MindDataTestRgbaToBgrOp() : CVOpCommon() {}
std::shared_ptr<Tensor> output_tensor_;
};
TEST_F(MindDataTestRgbaToBgrOp, TestOp1) {
MS_LOG(INFO) << "Doing testRGBA2BGR.";
std::unique_ptr<RgbaToBgrOp> op(new RgbaToBgrOp());
EXPECT_TRUE(op->OneToOne());
// prepare 4 channel image
cv::Mat rgba_image;
// First create the image with alpha channel
cv::cvtColor(raw_cv_image_, rgba_image, cv::COLOR_BGR2RGBA);
std::vector<cv::Mat>channels(4);
cv::split(rgba_image, channels);
channels[3] = cv::Mat::zeros(rgba_image.rows, rgba_image.cols, CV_8UC1);
cv::merge(channels, rgba_image);
// create new tensor to test conversion
std::shared_ptr<Tensor> rgba_input;
std::shared_ptr<CVTensor> input_cv_tensor;
CVTensor::CreateFromMat(rgba_image, &input_cv_tensor);
rgba_input = std::dynamic_pointer_cast<Tensor>(input_cv_tensor);
Status s = op->Compute(rgba_input, &output_tensor_);
size_t actual = 0;
if (s == Status::OK()) {
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
}
EXPECT_EQ(actual, input_tensor_->shape()[0] * input_tensor_->shape()[1] * 3);
EXPECT_EQ(s, Status::OK());
}

View File

@ -0,0 +1,62 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <opencv2/imgcodecs.hpp>
#include "common/common.h"
#include "common/cvop_common.h"
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
#include "minddata/dataset/core/cv_tensor.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestRgbaToRgbOp : public UT::CVOP::CVOpCommon {
protected:
MindDataTestRgbaToRgbOp() : CVOpCommon() {}
std::shared_ptr<Tensor> output_tensor_;
};
TEST_F(MindDataTestRgbaToRgbOp, TestOp1) {
MS_LOG(INFO) << "Doing testRGBA2RGB.";
std::unique_ptr<RgbaToRgbOp> op(new RgbaToRgbOp());
EXPECT_TRUE(op->OneToOne());
// prepare 4 channel image
cv::Mat rgba_image;
// First create the image with alpha channel
cv::cvtColor(raw_cv_image_, rgba_image, cv::COLOR_BGR2RGBA);
std::vector<cv::Mat>channels(4);
cv::split(rgba_image, channels);
channels[3] = cv::Mat::zeros(rgba_image.rows, rgba_image.cols, CV_8UC1);
cv::merge(channels, rgba_image);
// create new tensor to test conversion
std::shared_ptr<Tensor> rgba_input;
std::shared_ptr<CVTensor> input_cv_tensor;
CVTensor::CreateFromMat(rgba_image, &input_cv_tensor);
rgba_input = std::dynamic_pointer_cast<Tensor>(input_cv_tensor);
Status s = op->Compute(rgba_input, &output_tensor_);
size_t actual = 0;
if (s == Status::OK()) {
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
}
EXPECT_EQ(actual, input_tensor_->shape()[0] * input_tensor_->shape()[1] * 3);
EXPECT_EQ(s, Status::OK());
}