forked from mindspore-Ecosystem/mindspore
!4322 Adding RGBA color conversion
Merge pull request !4322 from EricZ/bitmap_support
This commit is contained in:
commit
2953720169
|
@ -35,6 +35,8 @@
|
|||
#include "minddata/dataset/kernels/image/random_solarize_op.h"
|
||||
#include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
|
||||
#include "minddata/dataset/kernels/image/resize_op.h"
|
||||
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
|
||||
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
|
||||
#include "minddata/dataset/kernels/image/swap_red_blue_op.h"
|
||||
#include "minddata/dataset/kernels/image/uniform_aug_op.h"
|
||||
|
||||
|
@ -240,6 +242,26 @@ std::shared_ptr<ResizeOperation> Resize(std::vector<int32_t> size, Interpolation
|
|||
return op;
|
||||
}
|
||||
|
||||
// Function to create RgbaToBgrOperation.
|
||||
std::shared_ptr<RgbaToBgrOperation> RGBA2BGR() {
|
||||
auto op = std::make_shared<RgbaToBgrOperation>();
|
||||
// Input validation
|
||||
if (!op->ValidateParams()) {
|
||||
return nullptr;
|
||||
}
|
||||
return op;
|
||||
}
|
||||
|
||||
// Function to create RgbaToRgbOperation.
|
||||
std::shared_ptr<RgbaToRgbOperation> RGBA2RGB() {
|
||||
auto op = std::make_shared<RgbaToRgbOperation>();
|
||||
// Input validation
|
||||
if (!op->ValidateParams()) {
|
||||
return nullptr;
|
||||
}
|
||||
return op;
|
||||
}
|
||||
|
||||
// Function to create SwapRedBlueOperation.
|
||||
std::shared_ptr<SwapRedBlueOperation> SwapRedBlue() {
|
||||
auto op = std::make_shared<SwapRedBlueOperation>();
|
||||
|
@ -743,6 +765,26 @@ std::shared_ptr<TensorOp> ResizeOperation::Build() {
|
|||
return std::make_shared<ResizeOp>(height, width, interpolation_);
|
||||
}
|
||||
|
||||
// RgbaToBgrOperation.
|
||||
RgbaToBgrOperation::RgbaToBgrOperation() {}
|
||||
|
||||
bool RgbaToBgrOperation::ValidateParams() { return true; }
|
||||
|
||||
std::shared_ptr<TensorOp> RgbaToBgrOperation::Build() {
|
||||
std::shared_ptr<RgbaToBgrOp> tensor_op = std::make_shared<RgbaToBgrOp>();
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
// RgbaToRgbOperation.
|
||||
RgbaToRgbOperation::RgbaToRgbOperation() {}
|
||||
|
||||
bool RgbaToRgbOperation::ValidateParams() { return true; }
|
||||
|
||||
std::shared_ptr<TensorOp> RgbaToRgbOperation::Build() {
|
||||
std::shared_ptr<RgbaToRgbOp> tensor_op = std::make_shared<RgbaToRgbOp>();
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
// SwapRedBlueOperation.
|
||||
SwapRedBlueOperation::SwapRedBlueOperation() {}
|
||||
|
||||
|
|
|
@ -65,14 +65,16 @@ class RandomSharpnessOperation;
|
|||
class RandomSolarizeOperation;
|
||||
class RandomVerticalFlipOperation;
|
||||
class ResizeOperation;
|
||||
class RgbaToBgrOperation;
|
||||
class RgbaToRgbOperation;
|
||||
class SwapRedBlueOperation;
|
||||
class UniformAugOperation;
|
||||
|
||||
/// \brief Function to create a CenterCrop TensorOperation.
|
||||
/// \notes Crops the input image at the center to the given size.
|
||||
/// \param[in] size - a vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size);
|
||||
|
||||
|
@ -103,15 +105,15 @@ std::shared_ptr<HwcToChwOperation> HWC2CHW();
|
|||
|
||||
/// \brief Function to create a MixUpBatch TensorOperation.
|
||||
/// \notes Apply MixUp transformation on an input batch of images and labels. The labels must be in one-hot format and
|
||||
/// Batch must be called before calling this function.
|
||||
/// Batch must be called before calling this function.
|
||||
/// \param[in] alpha hyperparameter of beta distribution (default = 1.0)
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<MixUpBatchOperation> MixUpBatch(float alpha = 1);
|
||||
|
||||
/// \brief Function to create a Normalize TensorOperation.
|
||||
/// \notes Normalize the input image with respect to mean and standard deviation.
|
||||
/// \param[in] mean - a vector of mean values for each channel, w.r.t channel order.
|
||||
/// \param[in] std - a vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
|
||||
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<NormalizeOperation> Normalize(std::vector<float> mean, std::vector<float> std);
|
||||
|
||||
|
@ -230,8 +232,18 @@ std::shared_ptr<RandomSolarizeOperation> RandomSolarize(uint8_t threshold_min =
|
|||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<RandomVerticalFlipOperation> RandomVerticalFlip(float prob = 0.5);
|
||||
|
||||
/// \brief Function to create a RgbaToBgr TensorOperation.
|
||||
/// \notes Changes the input 4 channel RGBA tensor to 3 channel BGR.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<RgbaToBgrOperation> RGBA2BGR();
|
||||
|
||||
/// \brief Function to create a RgbaToRgb TensorOperation.
|
||||
/// \notes Changes the input 4 channel RGBA tensor to 3 channel RGB.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<RgbaToRgbOperation> RGBA2RGB();
|
||||
|
||||
/// \brief Function to create a Resize TensorOperation.
|
||||
/// \notes Resize the input image to the given size..
|
||||
/// \notes Resize the input image to the given size.
|
||||
/// \param[in] size - a vector representing the output size of the resized image.
|
||||
/// If size is a single value, the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
|
@ -520,6 +532,28 @@ class ResizeOperation : public TensorOperation {
|
|||
InterpolationMode interpolation_;
|
||||
};
|
||||
|
||||
class RgbaToBgrOperation : public TensorOperation {
|
||||
public:
|
||||
RgbaToBgrOperation();
|
||||
|
||||
~RgbaToBgrOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
bool ValidateParams() override;
|
||||
};
|
||||
|
||||
class RgbaToRgbOperation : public TensorOperation {
|
||||
public:
|
||||
RgbaToRgbOperation();
|
||||
|
||||
~RgbaToRgbOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
bool ValidateParams() override;
|
||||
};
|
||||
|
||||
class UniformAugOperation : public TensorOperation {
|
||||
public:
|
||||
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops = 2);
|
||||
|
|
|
@ -36,6 +36,8 @@ add_library(kernels-image OBJECT
|
|||
rescale_op.cc
|
||||
resize_bilinear_op.cc
|
||||
resize_op.cc
|
||||
rgba_to_bgr_op.cc
|
||||
rgba_to_rgb_op.cc
|
||||
sharpness_op.cc
|
||||
solarize_op.cc
|
||||
swap_red_blue_op.cc
|
||||
|
|
|
@ -856,6 +856,44 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output
|
|||
RETURN_STATUS_UNEXPECTED("Unexpected error in pad");
|
||||
}
|
||||
}
|
||||
|
||||
Status RgbaToRgb(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
try {
|
||||
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
|
||||
int num_channels = input_cv->shape()[2];
|
||||
if (input_cv->shape().Size() != 3 || num_channels != 4) {
|
||||
std::string err_msg = "Number of channels does not equal 4, got : " + std::to_string(num_channels);
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
TensorShape out_shape = TensorShape({input_cv->shape()[0], input_cv->shape()[1], 3});
|
||||
std::shared_ptr<CVTensor> output_cv;
|
||||
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(out_shape, input_cv->type(), &output_cv));
|
||||
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_RGBA2RGB));
|
||||
*output = std::static_pointer_cast<Tensor>(output_cv);
|
||||
return Status::OK();
|
||||
} catch (const cv::Exception &e) {
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected error in RgbaToRgb.");
|
||||
}
|
||||
}
|
||||
|
||||
Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
try {
|
||||
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));
|
||||
int num_channels = input_cv->shape()[2];
|
||||
if (input_cv->shape().Size() != 3 || num_channels != 4) {
|
||||
std::string err_msg = "Number of channels does not equal 4, got : " + std::to_string(num_channels);
|
||||
RETURN_STATUS_UNEXPECTED(err_msg);
|
||||
}
|
||||
TensorShape out_shape = TensorShape({input_cv->shape()[0], input_cv->shape()[1], 3});
|
||||
std::shared_ptr<CVTensor> output_cv;
|
||||
RETURN_IF_NOT_OK(CVTensor::CreateEmpty(out_shape, input_cv->type(), &output_cv));
|
||||
cv::cvtColor(input_cv->mat(), output_cv->mat(), static_cast<int>(cv::COLOR_RGBA2BGR));
|
||||
*output = std::static_pointer_cast<Tensor>(output_cv);
|
||||
return Status::OK();
|
||||
} catch (const cv::Exception &e) {
|
||||
RETURN_STATUS_UNEXPECTED("Unexpected error in RgbaToBgr.");
|
||||
}
|
||||
}
|
||||
// -------- BBOX OPERATIONS -------- //
|
||||
Status UpdateBBoxesForCrop(std::shared_ptr<Tensor> *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax,
|
||||
int CB_Ymax) {
|
||||
|
|
|
@ -44,50 +44,50 @@ struct JpegErrorManagerCustom {
|
|||
jmp_buf setjmp_buffer;
|
||||
};
|
||||
|
||||
// Returns the interpolation mode in openCV format
|
||||
// @param mode: interpolation mode in DE format
|
||||
/// \brief Returns the interpolation mode in openCV format
|
||||
/// \param[in] mode Interpolation mode in DE format
|
||||
int GetCVInterpolationMode(InterpolationMode mode);
|
||||
|
||||
// Returns the openCV equivalent of the border type used for padding.
|
||||
// @param type
|
||||
// @return
|
||||
/// \brief Returns the openCV equivalent of the border type used for padding.
|
||||
/// \param type
|
||||
/// \return Status code
|
||||
int GetCVBorderType(BorderType type);
|
||||
|
||||
// Returns flipped image
|
||||
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param flip_code: 1 for Horizontal (around y-axis), 0 for Vertical (around x-axis), -1 for both
|
||||
// The flipping happens in place.
|
||||
/// \brief Returns flipped image
|
||||
/// \param[in] input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param flip_code: 1 for Horizontal (around y-axis), 0 for Vertical (around x-axis), -1 for both
|
||||
/// The flipping happens in place.
|
||||
Status Flip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output, int flip_code);
|
||||
|
||||
// Returns Horizontally flipped image
|
||||
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// The flipping happens in place.
|
||||
/// \brief Returns Horizontally flipped image
|
||||
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// The flipping happens in place.
|
||||
Status HorizontalFlip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
// Returns Vertically flipped image
|
||||
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// The flipping happens in place.
|
||||
/// \brief Returns Vertically flipped image
|
||||
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \note The flipping happens in place.
|
||||
Status VerticalFlip(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
// Returns Resized image.
|
||||
// @param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param output_height: height of output
|
||||
// @param output_width: width of output
|
||||
// @param fx: horizontal scale
|
||||
// @param fy: vertical scale
|
||||
// @param InterpolationMode: the interpolation mode
|
||||
// @param output: Resized image of shape <outputHeight,outputWidth,C> or <outputHeight,outputWidth>
|
||||
// and same type as input
|
||||
/// \brief Returns Resized image.
|
||||
/// \param input/output: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param output_height: height of output
|
||||
/// \param output_width: width of output
|
||||
/// \param fx: horizontal scale
|
||||
/// \param fy: vertical scale
|
||||
/// \param InterpolationMode: the interpolation mode
|
||||
/// \param output: Resized image of shape <outputHeight,outputWidth,C> or <outputHeight,outputWidth>
|
||||
/// and same type as input
|
||||
Status Resize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t output_height,
|
||||
int32_t output_width, double fx = 0.0, double fy = 0.0,
|
||||
InterpolationMode mode = InterpolationMode::kLinear);
|
||||
|
||||
// Returns Decoded image
|
||||
// Supported images:
|
||||
// BMP JPEG JPG PNG TIFF
|
||||
// supported by opencv, if user need more image analysis capabilities, please compile opencv particularlly.
|
||||
// @param input: CVTensor containing the not decoded image 1D bytes
|
||||
// @param output: Decoded image Tensor of shape <H,W,C> and type DE_UINT8. Pixel order is RGB
|
||||
/// \brief Returns Decoded image
|
||||
/// Supported images:
|
||||
/// BMP JPEG JPG PNG TIFF
|
||||
/// supported by opencv, if user need more image analysis capabilities, please compile opencv particularlly.
|
||||
/// \param input: CVTensor containing the not decoded image 1D bytes
|
||||
/// \param output: Decoded image Tensor of shape <H,W,C> and type DE_UINT8. Pixel order is RGB
|
||||
Status Decode(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
Status DecodeCv(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
@ -98,106 +98,107 @@ void JpegSetSource(j_decompress_ptr c_info, const void *data, int64_t data_size)
|
|||
|
||||
Status JpegCropAndDecode(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x = 0, int y = 0,
|
||||
int w = 0, int h = 0);
|
||||
// Returns Rescaled image
|
||||
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param rescale: rescale parameter
|
||||
// @param shift: shift parameter
|
||||
// @param output: Rescaled image Tensor of same input shape and type DE_FLOAT32
|
||||
|
||||
/// \brief Returns Rescaled image
|
||||
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param rescale: rescale parameter
|
||||
/// \param shift: shift parameter
|
||||
/// \param output: Rescaled image Tensor of same input shape and type DE_FLOAT32
|
||||
Status Rescale(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float rescale, float shift);
|
||||
|
||||
// Returns cropped ROI of an image
|
||||
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param x: starting horizontal position of ROI
|
||||
// @param y: starting vertical position of ROI
|
||||
// @param w: width of the ROI
|
||||
// @param h: height of the ROI
|
||||
// @param output: Cropped image Tensor of shape <h,w,C> or <h,w> and same input type.
|
||||
/// \brief Returns cropped ROI of an image
|
||||
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param x: starting horizontal position of ROI
|
||||
/// \param y: starting vertical position of ROI
|
||||
/// \param w: width of the ROI
|
||||
/// \param h: height of the ROI
|
||||
/// \param output: Cropped image Tensor of shape <h,w,C> or <h,w> and same input type.
|
||||
Status Crop(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x, int y, int w, int h);
|
||||
|
||||
// Swaps the channels in the image, i.e. converts HWC to CHW
|
||||
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param output: Tensor of shape <C,H,W> or <H,W> and same input type.
|
||||
/// \brief Swaps the channels in the image, i.e. converts HWC to CHW
|
||||
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param output: Tensor of shape <C,H,W> or <H,W> and same input type.
|
||||
Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
// Swap the red and blue pixels (RGB <-> BGR)
|
||||
// @param input: Tensor of shape <H,W,3> and any OpenCv compatible type, see CVTensor.
|
||||
// @param output: Swapped image of same shape and type
|
||||
/// \brief Swap the red and blue pixels (RGB <-> BGR)
|
||||
/// \param input: Tensor of shape <H,W,3> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param output: Swapped image of same shape and type
|
||||
Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
// Crops and resizes the image
|
||||
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param x: horizontal start point
|
||||
// @param y: vertical start point
|
||||
// @param crop_height: height of the cropped ROI
|
||||
// @param crop_width: width of the cropped ROI
|
||||
// @param target_width: width of the final resized image
|
||||
// @param target_height: height of the final resized image
|
||||
// @param InterpolationMode: the interpolation used in resize operation
|
||||
// @param output: Tensor of shape <targetHeight,targetWidth,C> or <targetHeight,targetWidth>
|
||||
// and same type as input
|
||||
/// \brief Crops and resizes the image
|
||||
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param x: horizontal start point
|
||||
/// \param y: vertical start point
|
||||
/// \param crop_height: height of the cropped ROI
|
||||
/// \param crop_width: width of the cropped ROI
|
||||
/// \param target_width: width of the final resized image
|
||||
/// \param target_height: height of the final resized image
|
||||
/// \param InterpolationMode: the interpolation used in resize operation
|
||||
/// \param output: Tensor of shape <targetHeight,targetWidth,C> or <targetHeight,targetWidth>
|
||||
/// and same type as input
|
||||
Status CropAndResize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int x, int y,
|
||||
int crop_height, int crop_width, int target_height, int target_width, InterpolationMode mode);
|
||||
|
||||
// Returns rotated image
|
||||
// @param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
// @param fx: rotation center x coordinate
|
||||
// @param fy: rotation center y coordinate
|
||||
// @param degree: degree to rotate
|
||||
// @param expand: if reshape is necessary
|
||||
// @param output: rotated image of same input type.
|
||||
/// \brief Returns rotated image
|
||||
/// \param input: Tensor of shape <H,W,C> or <H,W> and any OpenCv compatible type, see CVTensor.
|
||||
/// \param fx: rotation center x coordinate
|
||||
/// \param fy: rotation center y coordinate
|
||||
/// \param degree: degree to rotate
|
||||
/// \param expand: if reshape is necessary
|
||||
/// \param output: rotated image of same input type.
|
||||
Status Rotate(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float fx, float fy, float degree,
|
||||
InterpolationMode interpolation = InterpolationMode::kNearestNeighbour, bool expand = false,
|
||||
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
|
||||
|
||||
// Returns Normalized image
|
||||
// @param input: Tensor of shape <H,W,C> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
// @param mean: Tensor of shape <3> and type DE_FLOAT32 which are mean of each channel in RGB order
|
||||
// @param std: Tensor of shape <3> and type DE_FLOAT32 which are std of each channel in RGB order
|
||||
// @param output: Normalized image Tensor of same input shape and type DE_FLOAT32
|
||||
/// \brief Returns Normalized image
|
||||
/// \param input: Tensor of shape <H,W,C> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
/// \param mean: Tensor of shape <3> and type DE_FLOAT32 which are mean of each channel in RGB order
|
||||
/// \param std: Tensor of shape <3> and type DE_FLOAT32 which are std of each channel in RGB order
|
||||
/// \param output: Normalized image Tensor of same input shape and type DE_FLOAT32
|
||||
Status Normalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output,
|
||||
const std::shared_ptr<Tensor> &mean, const std::shared_ptr<Tensor> &std);
|
||||
|
||||
// Returns image with adjusted brightness.
|
||||
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
// @param alpha: Alpha value to adjust brightness by. Should be a positive number.
|
||||
// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
// This will output original image multiplied by alpha. 0 gives a black image, 1 gives the
|
||||
// original image while 2 increases the brightness by a factor of 2.
|
||||
// @param output: Adjusted image of same shape and type.
|
||||
/// \brief Returns image with adjusted brightness.
|
||||
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
/// \param alpha: Alpha value to adjust brightness by. Should be a positive number.
|
||||
/// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
/// This will output original image multiplied by alpha. 0 gives a black image, 1 gives the
|
||||
/// original image while 2 increases the brightness by a factor of 2.
|
||||
/// \param output: Adjusted image of same shape and type.
|
||||
Status AdjustBrightness(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
|
||||
|
||||
// Returns image with adjusted contrast.
|
||||
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
// @param alpha: Alpha value to adjust contrast by. Should be a positive number.
|
||||
// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
// 0 gives a solid gray image, 1 gives the original image while 2 increases
|
||||
// the contrast by a factor of 2.
|
||||
// @param output: Adjusted image of same shape and type.
|
||||
/// \brief Returns image with adjusted contrast.
|
||||
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
/// \param alpha: Alpha value to adjust contrast by. Should be a positive number.
|
||||
/// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
/// 0 gives a solid gray image, 1 gives the original image while 2 increases
|
||||
/// the contrast by a factor of 2.
|
||||
/// \param output: Adjusted image of same shape and type.
|
||||
Status AdjustContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
|
||||
|
||||
// Returns image with contrast maximized.
|
||||
// @param input: Tensor of shape <H,W,3>/<H,W,1>/<H,W> in RGB/Grayscale and any OpenCv compatible type, see CVTensor.
|
||||
// @param cutoff: Cutoff percentage of how many pixels are to be removed (high pixels change to 255 and low change to 0)
|
||||
// from the high and low ends of the histogram.
|
||||
// @param ignore: Pixel values to be ignored in the algorithm.
|
||||
/// \brief Returns image with contrast maximized.
|
||||
/// \param input: Tensor of shape <H,W,3>/<H,W,1>/<H,W> in RGB/Grayscale and any OpenCv compatible type, see CVTensor.
|
||||
/// \param cutoff: Cutoff percentage of how many pixels are to be removed (high pixels change to 255 and low change
|
||||
/// to 0) from the high and low ends of the histogram.
|
||||
/// \param ignore: Pixel values to be ignored in the algorithm.
|
||||
Status AutoContrast(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &cutoff,
|
||||
const std::vector<uint32_t> &ignore);
|
||||
|
||||
// Returns image with adjusted saturation.
|
||||
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
// @param alpha: Alpha value to adjust saturation by. Should be a positive number.
|
||||
// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
// 0 will give a black and white image, 1 will give the original image while
|
||||
// 2 will enhance the saturation by a factor of 2.
|
||||
// @param output: Adjusted image of same shape and type.
|
||||
/// \brief Returns image with adjusted saturation.
|
||||
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
/// \param alpha: Alpha value to adjust saturation by. Should be a positive number.
|
||||
/// If user input one value in python, the range is [1 - value, 1 + value].
|
||||
/// 0 will give a black and white image, 1 will give the original image while
|
||||
/// 2 will enhance the saturation by a factor of 2.
|
||||
/// \param output: Adjusted image of same shape and type.
|
||||
Status AdjustSaturation(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &alpha);
|
||||
|
||||
// Returns image with adjusted hue.
|
||||
// @param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
// @param hue: Hue value to adjust by, should be within range [-0.5, 0.5]. 0.5 and - 0.5 will reverse the hue channel
|
||||
// completely.
|
||||
// If user input one value in python, the range is [-value, value].
|
||||
// @param output: Adjusted image of same shape and type.
|
||||
/// \brief Returns image with adjusted hue.
|
||||
/// \param input: Tensor of shape <H,W,3> in RGB order and any OpenCv compatible type, see CVTensor.
|
||||
/// \param hue: Hue value to adjust by, should be within range [-0.5, 0.5]. 0.5 and - 0.5 will reverse the hue channel
|
||||
/// completely.
|
||||
/// If user input one value in python, the range is [-value, value].
|
||||
/// \param output: Adjusted image of same shape and type.
|
||||
Status AdjustHue(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const float &hue);
|
||||
|
||||
/// \brief Returns image with equalized histogram.
|
||||
|
@ -206,72 +207,84 @@ Status AdjustHue(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
|
|||
/// \param[out] output: Equalized image of same shape and type.
|
||||
Status Equalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
// Masks out a random section from the image with set dimension
|
||||
// @param input: input Tensor
|
||||
// @param output: cutOut Tensor
|
||||
// @param box_height: height of the cropped box
|
||||
// @param box_width: width of the cropped box
|
||||
// @param num_patches: number of boxes to cut out from the image
|
||||
// @param bounded: boolean flag to toggle between random erasing and cutout
|
||||
// @param random_color: whether or not random fill value should be used
|
||||
// @param fill_r: red fill value for erase
|
||||
// @param fill_g: green fill value for erase
|
||||
// @param fill_b: blue fill value for erase.
|
||||
/// \brief Masks out a random section from the image with set dimension
|
||||
/// \param input: input Tensor
|
||||
/// \param output: cutOut Tensor
|
||||
/// \param box_height: height of the cropped box
|
||||
/// \param box_width: width of the cropped box
|
||||
/// \param num_patches: number of boxes to cut out from the image
|
||||
/// \param bounded: boolean flag to toggle between random erasing and cutout
|
||||
/// \param random_color: whether or not random fill value should be used
|
||||
/// \param fill_r: red fill value for erase
|
||||
/// \param fill_g: green fill value for erase
|
||||
/// \param fill_b: blue fill value for erase.
|
||||
Status Erase(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int32_t box_height,
|
||||
int32_t box_width, int32_t num_patches, bool bounded, bool random_color, std::mt19937 *rnd,
|
||||
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
|
||||
|
||||
// Pads the input image and puts the padded image in the output
|
||||
// @param input: input Tensor
|
||||
// @param output: padded Tensor
|
||||
// @param pad_top: amount of padding done in top
|
||||
// @param pad_bottom: amount of padding done in bottom
|
||||
// @param pad_left: amount of padding done in left
|
||||
// @param pad_right: amount of padding done in right
|
||||
// @param border_types: the interpolation to be done in the border
|
||||
// @param fill_r: red fill value for pad
|
||||
// @param fill_g: green fill value for pad
|
||||
// @param fill_b: blue fill value for pad.
|
||||
/// \brief Pads the input image and puts the padded image in the output
|
||||
/// \param input: input Tensor
|
||||
/// \param output: padded Tensor
|
||||
/// \param pad_top: amount of padding done in top
|
||||
/// \param pad_bottom: amount of padding done in bottom
|
||||
/// \param pad_left: amount of padding done in left
|
||||
/// \param pad_right: amount of padding done in right
|
||||
/// \param border_types: the interpolation to be done in the border
|
||||
/// \param fill_r: red fill value for pad
|
||||
/// \param fill_g: green fill value for pad
|
||||
/// \param fill_b: blue fill value for pad.
|
||||
Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, const int32_t &pad_top,
|
||||
const int32_t &pad_bottom, const int32_t &pad_left, const int32_t &pad_right, const BorderType &border_types,
|
||||
uint8_t fill_r = 0, uint8_t fill_g = 0, uint8_t fill_b = 0);
|
||||
|
||||
// -------- BBOX OPERATIONS -------- //
|
||||
// Updates and checks bounding boxes for new cropped region of image
|
||||
// @param bboxList: A tensor contaning bounding box tensors
|
||||
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
// @param CB_Xmin: Image's CropBox Xmin coordinate
|
||||
// @param CB_Xmin: Image's CropBox Ymin coordinate
|
||||
// @param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width)
|
||||
// @param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height)
|
||||
/// \brief Take in a 4 channel image in RBGA to RGB
|
||||
/// \param[in] input The input image
|
||||
/// \param[out] output The output image
|
||||
/// \return Status code
|
||||
Status RgbaToRgb(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
/// \brief Take in a 4 channel image in RBGA to BGR
|
||||
/// \param[in] input The input image
|
||||
/// \param[out] output The output image
|
||||
/// \return Status code
|
||||
Status RgbaToBgr(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output);
|
||||
|
||||
/// -------- BBOX OPERATIONS -------- ///
|
||||
/// \brief Updates and checks bounding boxes for new cropped region of image
|
||||
/// \param bboxList: A tensor contaning bounding box tensors
|
||||
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
/// \param CB_Xmin: Image's CropBox Xmin coordinate
|
||||
/// \param CB_Xmin: Image's CropBox Ymin coordinate
|
||||
/// \param CB_Xmax: Image's CropBox Xmax coordinate - (Xmin + width)
|
||||
/// \param CB_Xmax: Image's CropBox Ymax coordinate - (Ymin + height)
|
||||
Status UpdateBBoxesForCrop(std::shared_ptr<Tensor> *bboxList, size_t *bboxCount, int CB_Xmin, int CB_Ymin, int CB_Xmax,
|
||||
int CB_Ymax);
|
||||
|
||||
// Updates bounding boxes with required Top and Left padding
|
||||
// Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push'
|
||||
// Top/Left since images 0,0 coordinate is taken from top left
|
||||
// @param bboxList: A tensor contaning bounding box tensors
|
||||
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
// @param pad_top: Total amount of padding applied to image top
|
||||
// @param pad_left: Total amount of padding applied to image left side
|
||||
/// \brief Updates bounding boxes with required Top and Left padding
|
||||
/// \note Top and Left padding amounts required to adjust bboxs min X,Y values according to padding 'push'
|
||||
/// Top/Left since images 0,0 coordinate is taken from top left
|
||||
/// \param bboxList: A tensor contaning bounding box tensors
|
||||
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
/// \param pad_top: Total amount of padding applied to image top
|
||||
/// \param pad_left: Total amount of padding applied to image left side
|
||||
Status PadBBoxes(const std::shared_ptr<Tensor> *bboxList, const size_t &bboxCount, int32_t pad_top, int32_t pad_left);
|
||||
|
||||
// Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes
|
||||
// For e.g those that remain after a crop
|
||||
// @param bboxList: A tensor contaning bounding box tensors
|
||||
// @param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
// @param bboxList: A tensor contaning bounding box tensors
|
||||
// @param target_width_: required width of image post resize
|
||||
// @param target_width_: required height of image post resize
|
||||
// @param orig_width: current width of image pre resize
|
||||
// @param orig_height: current height of image pre resize
|
||||
/// \brief Updates bounding boxes for an Image Resize Operation - Takes in set of valid BBoxes
|
||||
/// For e.g those that remain after a crop
|
||||
/// \param bboxList: A tensor contaning bounding box tensors
|
||||
/// \param bboxCount: total Number of bounding boxes - required within caller function to run update loop
|
||||
/// \param bboxList: A tensor contaning bounding box tensors
|
||||
/// \param target_width_: required width of image post resize
|
||||
/// \param target_width_: required height of image post resize
|
||||
/// \param orig_width: current width of image pre resize
|
||||
/// \param orig_height: current height of image pre resize
|
||||
Status UpdateBBoxesForResize(const std::shared_ptr<Tensor> &bboxList, const size_t &bboxCount, int32_t target_width_,
|
||||
int32_t target_height_, int orig_width, int orig_height);
|
||||
|
||||
// Get jpeg image width and height
|
||||
// @param input: CVTensor containing the not decoded image 1D bytes
|
||||
// @param img_width: the jpeg image width
|
||||
// @param img_height: the jpeg image height
|
||||
/// \brief Get jpeg image width and height
|
||||
/// \param input: CVTensor containing the not decoded image 1D bytes
|
||||
/// \param img_width: the jpeg image width
|
||||
/// \param img_height: the jpeg image height
|
||||
Status GetJpegImageInfo(const std::shared_ptr<Tensor> &input, int *img_width, int *img_height);
|
||||
|
||||
} // namespace dataset
|
||||
|
|
|
@ -0,0 +1,29 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
|
||||
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
Status RgbaToBgrOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
return RgbaToBgr(input, output);
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class RgbaToBgrOp : public TensorOp {
|
||||
public:
|
||||
RgbaToBgrOp() {}
|
||||
|
||||
~RgbaToBgrOp() override = default;
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
std::string Name() const override { return kRgbaToBgrOp; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_BGR_OP_H_
|
|
@ -0,0 +1,29 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
|
||||
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
Status RgbaToRgbOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
return RgbaToRgb(input, output);
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/image/image_utils.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class RgbaToRgbOp : public TensorOp {
|
||||
public:
|
||||
RgbaToRgbOp() {}
|
||||
|
||||
~RgbaToRgbOp() override = default;
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
std::string Name() const override { return kRgbaToRgbOp; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_KERNELS_RGBA_TO_RGB_OP_H_
|
|
@ -29,14 +29,7 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
class SwapRedBlueOp : public TensorOp {
|
||||
public:
|
||||
// SwapRedBlues the image to the output specified size. If only one value is provided,
|
||||
// the it will crop the smaller size and maintains the aspect ratio.
|
||||
// @param size1: the first size of output. If only this parameter is provided
|
||||
// the smaller dimension will be cropd to this and then the other dimension changes
|
||||
// such that the aspect ratio is maintained.
|
||||
// @param size2: the second size of output. If this is also provided, the output size
|
||||
// will be (size1, size2)
|
||||
// @param InterpolationMode: the interpolation mode being used.
|
||||
/// \brief Constructor
|
||||
SwapRedBlueOp() {}
|
||||
|
||||
SwapRedBlueOp(const SwapRedBlueOp &rhs) = default;
|
||||
|
@ -45,7 +38,7 @@ class SwapRedBlueOp : public TensorOp {
|
|||
|
||||
~SwapRedBlueOp() override = default;
|
||||
|
||||
void Print(std::ostream &out) const override { out << "SwapRedBlueOp x"; }
|
||||
void Print(std::ostream &out) const override { out << "SwapRedBlueOp"; }
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
|
|
|
@ -121,8 +121,10 @@ constexpr char kRescaleOp[] = "RescaleOp";
|
|||
constexpr char kResizeBilinearOp[] = "ResizeBilinearOp";
|
||||
constexpr char kResizeOp[] = "ResizeOp";
|
||||
constexpr char kResizeWithBBoxOp[] = "ResizeWithBBoxOp";
|
||||
constexpr char kSolarizeOp[] = "SolarizeOp";
|
||||
constexpr char kRgbaToBgrOp[] = "RgbaToBgrOp";
|
||||
constexpr char kRgbaToRgbOp[] = "RgbaToRgbOp";
|
||||
constexpr char kSharpnessOp[] = "SharpnessOp";
|
||||
constexpr char kSolarizeOp[] = "SolarizeOp";
|
||||
constexpr char kSwapRedBlueOp[] = "SwapRedBlueOp";
|
||||
constexpr char kUniformAugOp[] = "UniformAugOp";
|
||||
constexpr char kSoftDvppDecodeRandomCropResizeJpegOp[] = "SoftDvppDecodeRandomCropResizeJpegOp";
|
||||
|
|
|
@ -55,12 +55,14 @@ SET(DE_UT_SRCS
|
|||
random_vertical_flip_with_bbox_op_test.cc
|
||||
rename_op_test.cc
|
||||
repeat_op_test.cc
|
||||
skip_op_test.cc
|
||||
rescale_op_test.cc
|
||||
resize_bilinear_op_test.cc
|
||||
resize_op_test.cc
|
||||
resize_with_bbox_op_test.cc
|
||||
rgba_to_bgr_op_test.cc
|
||||
rgba_to_rgb_op_test.cc
|
||||
schema_test.cc
|
||||
skip_op_test.cc
|
||||
shuffle_op_test.cc
|
||||
stand_alone_samplers_test.cc
|
||||
status_test.cc
|
||||
|
|
|
@ -0,0 +1,62 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include "common/common.h"
|
||||
#include "common/cvop_common.h"
|
||||
#include "minddata/dataset/kernels/image/rgba_to_bgr_op.h"
|
||||
#include "minddata/dataset/core/cv_tensor.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
|
||||
class MindDataTestRgbaToBgrOp : public UT::CVOP::CVOpCommon {
|
||||
protected:
|
||||
MindDataTestRgbaToBgrOp() : CVOpCommon() {}
|
||||
|
||||
std::shared_ptr<Tensor> output_tensor_;
|
||||
};
|
||||
|
||||
TEST_F(MindDataTestRgbaToBgrOp, TestOp1) {
|
||||
MS_LOG(INFO) << "Doing testRGBA2BGR.";
|
||||
std::unique_ptr<RgbaToBgrOp> op(new RgbaToBgrOp());
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
// prepare 4 channel image
|
||||
cv::Mat rgba_image;
|
||||
// First create the image with alpha channel
|
||||
cv::cvtColor(raw_cv_image_, rgba_image, cv::COLOR_BGR2RGBA);
|
||||
std::vector<cv::Mat>channels(4);
|
||||
cv::split(rgba_image, channels);
|
||||
channels[3] = cv::Mat::zeros(rgba_image.rows, rgba_image.cols, CV_8UC1);
|
||||
cv::merge(channels, rgba_image);
|
||||
// create new tensor to test conversion
|
||||
std::shared_ptr<Tensor> rgba_input;
|
||||
std::shared_ptr<CVTensor> input_cv_tensor;
|
||||
CVTensor::CreateFromMat(rgba_image, &input_cv_tensor);
|
||||
rgba_input = std::dynamic_pointer_cast<Tensor>(input_cv_tensor);
|
||||
|
||||
Status s = op->Compute(rgba_input, &output_tensor_);
|
||||
size_t actual = 0;
|
||||
if (s == Status::OK()) {
|
||||
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
|
||||
}
|
||||
EXPECT_EQ(actual, input_tensor_->shape()[0] * input_tensor_->shape()[1] * 3);
|
||||
EXPECT_EQ(s, Status::OK());
|
||||
}
|
||||
|
|
@ -0,0 +1,62 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include "common/common.h"
|
||||
#include "common/cvop_common.h"
|
||||
#include "minddata/dataset/kernels/image/rgba_to_rgb_op.h"
|
||||
#include "minddata/dataset/core/cv_tensor.h"
|
||||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
|
||||
class MindDataTestRgbaToRgbOp : public UT::CVOP::CVOpCommon {
|
||||
protected:
|
||||
MindDataTestRgbaToRgbOp() : CVOpCommon() {}
|
||||
|
||||
std::shared_ptr<Tensor> output_tensor_;
|
||||
};
|
||||
|
||||
TEST_F(MindDataTestRgbaToRgbOp, TestOp1) {
|
||||
MS_LOG(INFO) << "Doing testRGBA2RGB.";
|
||||
std::unique_ptr<RgbaToRgbOp> op(new RgbaToRgbOp());
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
// prepare 4 channel image
|
||||
cv::Mat rgba_image;
|
||||
// First create the image with alpha channel
|
||||
cv::cvtColor(raw_cv_image_, rgba_image, cv::COLOR_BGR2RGBA);
|
||||
std::vector<cv::Mat>channels(4);
|
||||
cv::split(rgba_image, channels);
|
||||
channels[3] = cv::Mat::zeros(rgba_image.rows, rgba_image.cols, CV_8UC1);
|
||||
cv::merge(channels, rgba_image);
|
||||
// create new tensor to test conversion
|
||||
std::shared_ptr<Tensor> rgba_input;
|
||||
std::shared_ptr<CVTensor> input_cv_tensor;
|
||||
CVTensor::CreateFromMat(rgba_image, &input_cv_tensor);
|
||||
rgba_input = std::dynamic_pointer_cast<Tensor>(input_cv_tensor);
|
||||
|
||||
Status s = op->Compute(rgba_input, &output_tensor_);
|
||||
size_t actual = 0;
|
||||
if (s == Status::OK()) {
|
||||
actual = output_tensor_->shape()[0] * output_tensor_->shape()[1] * output_tensor_->shape()[2];
|
||||
}
|
||||
EXPECT_EQ(actual, input_tensor_->shape()[0] * input_tensor_->shape()[1] * 3);
|
||||
EXPECT_EQ(s, Status::OK());
|
||||
}
|
||||
|
Loading…
Reference in New Issue