forked from mindspore-Ecosystem/mindspore
!1017 add profiling_mode and profiling_options to context
Merge pull request !1017 from jinyaohui/context_opt
This commit is contained in:
commit
28a6daaed5
|
@ -145,7 +145,11 @@ PYBIND11_MODULE(_c_expression, m) {
|
|||
.def("set_save_dump_path", &mindspore::MsContext::set_save_dump_path, "Set path to dump.")
|
||||
.def("set_graph_memory_max_size", &mindspore::MsContext::set_graph_memory_max_size, "set graph memory max size.")
|
||||
.def("set_variable_memory_max_size", &mindspore::MsContext::set_variable_memory_max_size,
|
||||
"set variable memory max size");
|
||||
"set variable memory max size")
|
||||
.def("get_enable_profiling", &mindspore::MsContext::enable_profiling, "Get whether to open profiling.")
|
||||
.def("set_enable_profiling", &mindspore::MsContext::set_enable_profiling, "Set whether to open profiling.")
|
||||
.def("get_profiling_options", &mindspore::MsContext::profiling_options, "Get options to profiling.")
|
||||
.def("set_profiling_options", &mindspore::MsContext::set_profiling_options, "Set options to profiling.");
|
||||
|
||||
(void)py::class_<ParallelContext, std::shared_ptr<ParallelContext>>(m, "AutoParallelContext")
|
||||
.def_static("get_instance", &ParallelContext::GetInstance, "Get auto parallel context instance.")
|
||||
|
|
|
@ -78,6 +78,8 @@ MsContext::MsContext(const std::string &policy, const std::string &target) {
|
|||
graph_memory_max_size_ = "0";
|
||||
variable_memory_max_size_ = "0";
|
||||
enable_loop_sink_ = target == kAscendDevice || target == kDavinciDevice;
|
||||
profiling_mode_ = false;
|
||||
profiling_options_ = "training_trace";
|
||||
}
|
||||
|
||||
std::shared_ptr<MsContext> MsContext::GetInstance() {
|
||||
|
@ -279,6 +281,11 @@ void MsContext::GetGeOptions(std::map<std::string, std::string> *ge_options) con
|
|||
(*ge_options)["device_id"] = "0";
|
||||
(*ge_options)["ge.exec.enableDump"] = std::to_string(enable_dump_);
|
||||
(*ge_options)["ge.exec.dumpPath"] = save_dump_path_;
|
||||
(*ge_options)["ge.exec.profilingMode"] = std::to_string(profiling_mode_);
|
||||
if (profiling_mode_) {
|
||||
(*ge_options)["ge.exec.profilingOptions"] = profiling_options_;
|
||||
}
|
||||
|
||||
// only not supported in ge
|
||||
auto tbe_plugin_path = common::GetEnv("ME_TBE_PLUGIN_PATH");
|
||||
if (!tbe_plugin_path.empty()) {
|
||||
|
|
|
@ -138,6 +138,12 @@ class MsContext {
|
|||
variable_memory_max_size_ = variable_memory_max_size;
|
||||
}
|
||||
|
||||
void set_enable_profiling(bool flag) { profiling_mode_ = flag; }
|
||||
bool enable_profiling() const { return profiling_mode_; }
|
||||
|
||||
void set_profiling_options(const std::string &options) { profiling_options_ = options; }
|
||||
std::string profiling_options() const { return profiling_options_; }
|
||||
|
||||
private:
|
||||
MsContext(const std::string &backend_policy, const std::string &target);
|
||||
void GetGeOptions(std::map<std::string, std::string> *ge_options) const;
|
||||
|
@ -174,6 +180,8 @@ class MsContext {
|
|||
std::string graph_memory_max_size_;
|
||||
std::string variable_memory_max_size_;
|
||||
std::thread tdt_print_;
|
||||
bool profiling_mode_;
|
||||
std::string profiling_options_;
|
||||
};
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -26,7 +26,6 @@ from mindspore._checkparam import args_type_check
|
|||
from mindspore.parallel._auto_parallel_context import _set_auto_parallel_context, _get_auto_parallel_context, \
|
||||
_reset_auto_parallel_context
|
||||
|
||||
|
||||
__all__ = ['GRAPH_MODE', 'PYNATIVE_MODE', 'set_context', 'get_context', 'set_auto_parallel_context',
|
||||
'get_auto_parallel_context', 'reset_auto_parallel_context']
|
||||
|
||||
|
@ -297,6 +296,26 @@ class _Context:
|
|||
def save_dump_path(self, save_dump_path):
|
||||
self._context_handle.set_save_dump_path(save_dump_path)
|
||||
|
||||
@property
|
||||
def enable_profiling(self):
|
||||
return self._context_handle.get_enable_profiling()
|
||||
|
||||
@enable_profiling.setter
|
||||
def enable_profiling(self, flag):
|
||||
self._context_handle.set_enable_profiling(flag)
|
||||
|
||||
@property
|
||||
def profiling_options(self):
|
||||
return self._context_handle.get_profiling_options()
|
||||
|
||||
@profiling_options.setter
|
||||
def profiling_options(self, option):
|
||||
options = ["training_trace", "task_trace", "task_trace:training_trace", "training_trace:task_trace", "op_trace"]
|
||||
if option not in options:
|
||||
raise ValueError("Profiling options must be in 'training_trace' 'task_trace' "
|
||||
"'task_trace:training_trace' 'training_trace:task_trace' or 'op_trace'.")
|
||||
self._context_handle.set_profiling_options(option)
|
||||
|
||||
@property
|
||||
def reserve_class_name_in_scope(self):
|
||||
"""Gets whether to save the network class name in the scope."""
|
||||
|
@ -472,7 +491,7 @@ def reset_auto_parallel_context():
|
|||
enable_mem_reuse=bool, save_ms_model=bool, save_ms_model_path=str,
|
||||
enable_auto_mixed_precision=bool, enable_dump=bool, save_dump_path=str,
|
||||
enable_reduce_precision=bool, graph_memory_max_size=str,
|
||||
variable_memory_max_size=str)
|
||||
variable_memory_max_size=str, enable_profiling=bool, profiling_options=str)
|
||||
def set_context(**kwargs):
|
||||
"""
|
||||
Sets context for running environment.
|
||||
|
@ -515,6 +534,21 @@ def set_context(**kwargs):
|
|||
So the real dump path is "{configured root dump path}/{`save_dump_path`}". Default: ".".
|
||||
graph_memory_max_size (str): Sets graph memory max size. Default: "26GB".
|
||||
variable_memory_max_size (str): Sets variable memory max size. Default: "5GB".
|
||||
enable_profiling (bool): Whether to open profiling. Default: False.
|
||||
profiling_options (str): Sets profiling collection options, operators can profiling data here.
|
||||
Profiling collection options, the values are as follows, supporting the collection of multiple data.
|
||||
|
||||
- training_trace: collect iterative trajectory data, that is, the training task and software information of
|
||||
the AI software stack, to achieve performance analysis of the training task, focusing on data
|
||||
enhancement, forward and backward calculation, gradient aggregation update and other related data.
|
||||
|
||||
- task_trace: collect task trajectory data, that is, the hardware information of the HWTS/AICore of
|
||||
the Ascend 910 processor, and analyze the information of start and end of the task.
|
||||
|
||||
- op_trace: collect single operator performance data.
|
||||
The profiling can choose training_trace, task_trace, training_trace and task_trace combination and
|
||||
separated by colons; single operator can choose op_trace, op_trace cannot be combined with
|
||||
training_trace and task_trace. Default: "training_trace".
|
||||
|
||||
Raises:
|
||||
ValueError: If input key is not an attribute in context.
|
||||
|
@ -536,6 +570,7 @@ def set_context(**kwargs):
|
|||
>>> context.set_context(mode=context.GRAPH_MODE,
|
||||
>>> device_target="Ascend",device_id=0, save_graphs=True,
|
||||
>>> save_graphs_path="/mindspore")
|
||||
>>> context.set_context(enable_profiling=True, profiling_options="training_trace")
|
||||
"""
|
||||
for key, value in kwargs.items():
|
||||
if not hasattr(_context(), key):
|
||||
|
|
|
@ -16,6 +16,8 @@
|
|||
import os
|
||||
import pytest
|
||||
from mindspore import context
|
||||
|
||||
|
||||
# pylint: disable=W0212
|
||||
# W0212: protected-access
|
||||
|
||||
|
@ -72,6 +74,34 @@ def test_dump_target():
|
|||
assert context.get_context("save_dump_path") == "."
|
||||
|
||||
|
||||
def test_enable_profiling():
|
||||
""" test_profiling_mode """
|
||||
with pytest.raises(TypeError):
|
||||
context.set_context(enable_profiling=1)
|
||||
with pytest.raises(TypeError):
|
||||
context.set_context(enable_profiling="1")
|
||||
context.set_context(enable_profiling=True)
|
||||
assert context.get_context("enable_profiling") is True
|
||||
context.set_context(enable_profiling=False)
|
||||
assert context.get_context("enable_profiling") is False
|
||||
|
||||
|
||||
def test_profiling_options():
|
||||
""" test_profiling_options """
|
||||
with pytest.raises(TypeError):
|
||||
context.set_context(profiling_options=True)
|
||||
with pytest.raises(TypeError):
|
||||
context.set_context(profiling_options=1)
|
||||
with pytest.raises(ValueError):
|
||||
context.set_context(profiling_options="training_")
|
||||
with pytest.raises(ValueError):
|
||||
context.set_context(profiling_options="training_trace:op_trace")
|
||||
context.set_context(profiling_options="training_trace")
|
||||
assert context.get_context("profiling_options") == "training_trace"
|
||||
context.set_context(profiling_options="training_trace:task_trace")
|
||||
assert context.get_context("profiling_options") == "training_trace:task_trace"
|
||||
|
||||
|
||||
def test_set_context():
|
||||
""" test_set_context """
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
|
||||
|
@ -101,4 +131,3 @@ def teardown_module():
|
|||
os.rmdir(item_name)
|
||||
elif os.path.isfile(item_name):
|
||||
os.remove(item_name)
|
||||
|
||||
|
|
Loading…
Reference in New Issue