Add SparseToDense op

This commit is contained in:
zhengqihao 2021-03-22 10:56:08 +08:00
parent 3539952b66
commit 27f508760b
3 changed files with 503 additions and 0 deletions

View File

@ -0,0 +1,98 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/sparse_to_dense_cpu_kernal.h"
#include <algorithm>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
template <typename I, typename T>
void SparseToDenseCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
indices_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
values_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
dense_shape_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
if (!indices_shape_.size() || !values_shape_.size() || !output_shape_.size()) {
MS_LOG(EXCEPTION) << "Input NULL";
}
if (indices_shape_.size() > 2 || indices_shape_[0] != values_shape_[0]) {
MS_LOG(EXCEPTION) << "Input Error";
}
}
size_t DenseGetTensorLen(const std::vector<size_t> &shape) {
size_t len = 1;
for (size_t i = 0; i < shape.size(); i++) {
len *= shape[i];
}
return len;
}
template <typename I, typename T>
bool SparseToDenseCPUKernel<I, T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
auto indices_addr = reinterpret_cast<I *>(inputs[0]->addr);
auto values_addr = reinterpret_cast<T *>(inputs[1]->addr);
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
size_t output_len = DenseGetTensorLen(output_shape_);
memset(output_addr, 0, output_len * sizeof(T));
std::vector<size_t> cargo(output_shape_.size(), 0);
size_t i = output_shape_.size() - 1;
switch (indices_shape_.size()) {
case 1:
for (i = 0; i < indices_shape_[0]; i++) {
output_addr[indices_addr[i]] = values_addr[i];
}
break;
case 2:
cargo[i] = 1;
for (; i >= 1; i--) {
cargo[i - 1] = cargo[i] * output_shape_[i];
}
for (i = 0; i < indices_shape_[0]; i++) {
size_t out_index = 0;
for (size_t j = 0; j < indices_shape_[1]; j++) {
out_index += (*(indices_addr + i * indices_shape_[1] + j)) * cargo[j];
}
output_addr[out_index] = values_addr[i];
}
break;
default:
break;
}
return true;
}
template <typename I, typename T>
void SparseToDenseCPUKernel<I, T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SparseToDenseCPUKernel needs 3 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but SparseToDenseCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,207 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename I, typename T>
class SparseToDenseCPUKernel : public CPUKernel {
public:
SparseToDenseCPUKernel() = default;
~SparseToDenseCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> indices_shape_;
std::vector<size_t> values_shape_;
std::vector<size_t> dense_shape_shape_;
std::vector<size_t> output_shape_;
};
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
SparseToDenseCPUKernel, int32_t, int32_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt8),
SparseToDenseCPUKernel, int32_t, int8_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeUInt8),
SparseToDenseCPUKernel, int32_t, uint8_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt16),
SparseToDenseCPUKernel, int32_t, int16_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeUInt16)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeUInt16),
SparseToDenseCPUKernel, int32_t, uint16_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt64),
SparseToDenseCPUKernel, int32_t, int64_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat16),
SparseToDenseCPUKernel, int32_t, float16);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat),
SparseToDenseCPUKernel, int32_t, float);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat64),
SparseToDenseCPUKernel, int32_t, double);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeBool),
SparseToDenseCPUKernel, int32_t, bool);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt32),
SparseToDenseCPUKernel, int64_t, int32_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
SparseToDenseCPUKernel, int64_t, int64_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt8)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt8),
SparseToDenseCPUKernel, int64_t, int8_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt8)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeUInt8),
SparseToDenseCPUKernel, int64_t, uint8_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt16)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt16),
SparseToDenseCPUKernel, int64_t, int16_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeUInt16)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeUInt16),
SparseToDenseCPUKernel, int64_t, uint16_t);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeFloat16),
SparseToDenseCPUKernel, int64_t, float16);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeFloat),
SparseToDenseCPUKernel, int64_t, float);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeFloat64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeFloat64),
SparseToDenseCPUKernel, int64_t, double);
MS_REG_CPU_KERNEL_T_S(SparseToDense,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeBool)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeBool),
SparseToDenseCPUKernel, int64_t, bool);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_

View File

@ -0,0 +1,198 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="CPU")
class SparseToDenseNet(Cell):
def __init__(self):
super(SparseToDenseNet, self).__init__()
self.sparse_to_dense = P.SparseToDense()
def construct(self, indices, values, dense_shape):
return self.sparse_to_dense(indices, values, dense_shape)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_A():
np.random.seed(0)
indices = np.array([[0, 1], [1, 2]]).astype(np.int32)
values = np.array([7, 8]).astype(np.int32)
dense_shape = (3, 4)
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
expect_output = np.array([[0, 7, 0, 0],
[0, 0, 8, 0],
[0, 0, 0, 0]]).astype(np.int32)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_B():
np.random.seed(0)
indices = np.array([[0, 1], [1, 2], [2, 3]]).astype(np.int32)
values = np.array([6.5, 7.5, 9.5]).astype(np.float64)
dense_shape = (3, 4)
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
expect_output = np.array([[0, 6.5, 0, 0],
[0, 0, 7.5, 0],
[0, 0, 0, 9.5]]).astype(np.float64)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_C():
np.random.seed(0)
indices = np.array([[0, 1, 0, 0],
[1, 0, 0, 2],
[2, 0, 3, 0],
[4, 2, 3, 5]]).astype(np.int32)
values = np.array([26.5, 17.5, 39.5, 11.5]).astype(np.float16)
dense_shape = (10, 8, 5, 10)
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
expect_output = np.zeros([10, 8, 5, 10]).astype(np.float16)
for i in range(0, indices.shape[0]):
j = indices[i][0]
k = indices[i][1]
l = indices[i][2]
m = indices[i][3]
expect_output[j][k][l][m] = values[i]
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_D():
np.random.seed(0)
indices = np.array([[0, 1, 0, 0, 2, 1],
[9, 0, 0, 8, 0, 0],
[2, 0, 4, 0, 1, 1],
[4, 2, 3, 5, 0, 2],
[7, 4, 3, 9, 0, 1]]).astype(np.int32)
values = np.array([1, 1, 1, 1, 1]).astype(np.bool)
dense_shape = (10, 5, 5, 10, 3, 3)
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
expect_output = np.zeros([10, 5, 5, 10, 3, 3]).astype(np.bool)
for i in range(0, indices.shape[0]):
j = indices[i][0]
k = indices[i][1]
l = indices[i][2]
m = indices[i][3]
u = indices[i][4]
v = indices[i][5]
expect_output[j][k][l][m][u][v] = values[i]
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_E():
indices = np.array([2, 5, 7]).astype(np.int32)
values = np.array([17, 18, 19]).astype(np.int8)
dense_shape = ([10])
expect_output = np.zeros([10]).astype(np.int8)
for i in range(0, indices.shape[0]):
j = indices[i]
expect_output[j] = values[i]
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_F():
indices = np.array([2, 4, 18]).astype(np.int32)
values = np.array([-23, 18, -1]).astype(np.int16)
dense_shape = ([20])
expect_output = np.zeros([20]).astype(np.int16)
for i in range(0, indices.shape[0]):
j = indices[i]
expect_output[j] = values[i]
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_G():
indices = np.array([2, 5, 7]).astype(np.int32)
values = np.array([17, 18, 19]).astype(np.uint8)
dense_shape = ([10])
expect_output = np.zeros([10]).astype(np.uint8)
for i in range(0, indices.shape[0]):
j = indices[i]
expect_output[j] = values[i]
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_H():
indices = np.array([2, 5, 7]).astype(np.int32)
values = np.array([17, 18, 19]).astype(np.uint16)
dense_shape = ([10])
expect_output = np.zeros([10]).astype(np.uint16)
for i in range(0, indices.shape[0]):
j = indices[i]
expect_output[j] = values[i]
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sparse_to_dense_I():
indices = np.array([2, 5, 7]).astype(np.int64)
values = np.array([17, 18, 19]).astype(np.float16)
dense_shape = ([10])
expect_output = np.zeros([10]).astype(np.float16)
for i in range(0, indices.shape[0]):
j = indices[i]
expect_output[j] = values[i]
net = SparseToDenseNet()
result = net(Tensor(indices), Tensor(values), dense_shape)
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)