forked from mindspore-Ecosystem/mindspore
Add SparseToDense op
This commit is contained in:
parent
3539952b66
commit
27f508760b
|
@ -0,0 +1,98 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sparse_to_dense_cpu_kernal.h"
|
||||
#include <algorithm>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename I, typename T>
|
||||
void SparseToDenseCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
indices_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
values_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
dense_shape_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
if (!indices_shape_.size() || !values_shape_.size() || !output_shape_.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input NULL";
|
||||
}
|
||||
if (indices_shape_.size() > 2 || indices_shape_[0] != values_shape_[0]) {
|
||||
MS_LOG(EXCEPTION) << "Input Error";
|
||||
}
|
||||
}
|
||||
|
||||
size_t DenseGetTensorLen(const std::vector<size_t> &shape) {
|
||||
size_t len = 1;
|
||||
for (size_t i = 0; i < shape.size(); i++) {
|
||||
len *= shape[i];
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
bool SparseToDenseCPUKernel<I, T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto indices_addr = reinterpret_cast<I *>(inputs[0]->addr);
|
||||
auto values_addr = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
size_t output_len = DenseGetTensorLen(output_shape_);
|
||||
memset(output_addr, 0, output_len * sizeof(T));
|
||||
std::vector<size_t> cargo(output_shape_.size(), 0);
|
||||
|
||||
size_t i = output_shape_.size() - 1;
|
||||
switch (indices_shape_.size()) {
|
||||
case 1:
|
||||
for (i = 0; i < indices_shape_[0]; i++) {
|
||||
output_addr[indices_addr[i]] = values_addr[i];
|
||||
}
|
||||
break;
|
||||
|
||||
case 2:
|
||||
cargo[i] = 1;
|
||||
for (; i >= 1; i--) {
|
||||
cargo[i - 1] = cargo[i] * output_shape_[i];
|
||||
}
|
||||
for (i = 0; i < indices_shape_[0]; i++) {
|
||||
size_t out_index = 0;
|
||||
for (size_t j = 0; j < indices_shape_[1]; j++) {
|
||||
out_index += (*(indices_addr + i * indices_shape_[1] + j)) * cargo[j];
|
||||
}
|
||||
output_addr[out_index] = values_addr[i];
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
void SparseToDenseCPUKernel<I, T>::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 3) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SparseToDenseCPUKernel needs 3 input.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but SparseToDenseCPUKernel needs 1 output.";
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,207 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename I, typename T>
|
||||
class SparseToDenseCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SparseToDenseCPUKernel() = default;
|
||||
~SparseToDenseCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> indices_shape_;
|
||||
std::vector<size_t> values_shape_;
|
||||
std::vector<size_t> dense_shape_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseToDenseCPUKernel, int32_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseToDenseCPUKernel, int32_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseToDenseCPUKernel, int32_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseToDenseCPUKernel, int32_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseToDenseCPUKernel, int32_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseToDenseCPUKernel, int32_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SparseToDenseCPUKernel, int32_t, float16);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat),
|
||||
SparseToDenseCPUKernel, int32_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseToDenseCPUKernel, int32_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseToDenseCPUKernel, int32_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseToDenseCPUKernel, int64_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseToDenseCPUKernel, int64_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseToDenseCPUKernel, int64_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseToDenseCPUKernel, int64_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseToDenseCPUKernel, int64_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseToDenseCPUKernel, int64_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
SparseToDenseCPUKernel, int64_t, float16);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat),
|
||||
SparseToDenseCPUKernel, int64_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseToDenseCPUKernel, int64_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseToDense,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseToDenseCPUKernel, int64_t, bool);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSETODENSE_CPU_KERNEL_H_
|
|
@ -0,0 +1,198 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="CPU")
|
||||
|
||||
|
||||
class SparseToDenseNet(Cell):
|
||||
def __init__(self):
|
||||
super(SparseToDenseNet, self).__init__()
|
||||
self.sparse_to_dense = P.SparseToDense()
|
||||
|
||||
def construct(self, indices, values, dense_shape):
|
||||
return self.sparse_to_dense(indices, values, dense_shape)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_A():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1], [1, 2]]).astype(np.int32)
|
||||
values = np.array([7, 8]).astype(np.int32)
|
||||
dense_shape = (3, 4)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.array([[0, 7, 0, 0],
|
||||
[0, 0, 8, 0],
|
||||
[0, 0, 0, 0]]).astype(np.int32)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_B():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1], [1, 2], [2, 3]]).astype(np.int32)
|
||||
values = np.array([6.5, 7.5, 9.5]).astype(np.float64)
|
||||
dense_shape = (3, 4)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.array([[0, 6.5, 0, 0],
|
||||
[0, 0, 7.5, 0],
|
||||
[0, 0, 0, 9.5]]).astype(np.float64)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_C():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1, 0, 0],
|
||||
[1, 0, 0, 2],
|
||||
[2, 0, 3, 0],
|
||||
[4, 2, 3, 5]]).astype(np.int32)
|
||||
values = np.array([26.5, 17.5, 39.5, 11.5]).astype(np.float16)
|
||||
dense_shape = (10, 8, 5, 10)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.zeros([10, 8, 5, 10]).astype(np.float16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i][0]
|
||||
k = indices[i][1]
|
||||
l = indices[i][2]
|
||||
m = indices[i][3]
|
||||
expect_output[j][k][l][m] = values[i]
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_D():
|
||||
np.random.seed(0)
|
||||
indices = np.array([[0, 1, 0, 0, 2, 1],
|
||||
[9, 0, 0, 8, 0, 0],
|
||||
[2, 0, 4, 0, 1, 1],
|
||||
[4, 2, 3, 5, 0, 2],
|
||||
[7, 4, 3, 9, 0, 1]]).astype(np.int32)
|
||||
values = np.array([1, 1, 1, 1, 1]).astype(np.bool)
|
||||
dense_shape = (10, 5, 5, 10, 3, 3)
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
expect_output = np.zeros([10, 5, 5, 10, 3, 3]).astype(np.bool)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i][0]
|
||||
k = indices[i][1]
|
||||
l = indices[i][2]
|
||||
m = indices[i][3]
|
||||
u = indices[i][4]
|
||||
v = indices[i][5]
|
||||
expect_output[j][k][l][m][u][v] = values[i]
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_E():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.int8)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.int8)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_F():
|
||||
indices = np.array([2, 4, 18]).astype(np.int32)
|
||||
values = np.array([-23, 18, -1]).astype(np.int16)
|
||||
dense_shape = ([20])
|
||||
expect_output = np.zeros([20]).astype(np.int16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_G():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.uint8)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.uint8)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_H():
|
||||
indices = np.array([2, 5, 7]).astype(np.int32)
|
||||
values = np.array([17, 18, 19]).astype(np.uint16)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.uint16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sparse_to_dense_I():
|
||||
indices = np.array([2, 5, 7]).astype(np.int64)
|
||||
values = np.array([17, 18, 19]).astype(np.float16)
|
||||
dense_shape = ([10])
|
||||
expect_output = np.zeros([10]).astype(np.float16)
|
||||
for i in range(0, indices.shape[0]):
|
||||
j = indices[i]
|
||||
expect_output[j] = values[i]
|
||||
|
||||
net = SparseToDenseNet()
|
||||
result = net(Tensor(indices), Tensor(values), dense_shape)
|
||||
assert np.allclose(result.asnumpy(), expect_output, rtol=1.e-4, atol=1.e-8, equal_nan=True)
|
Loading…
Reference in New Issue