forked from mindspore-Ecosystem/mindspore
dataset: Add IR vision error input tests, plus other UT updates
This commit is contained in:
parent
a5af03f8ca
commit
253f389817
|
@ -76,8 +76,8 @@ TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -239,7 +239,8 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess2) {
|
|||
|
||||
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=-1, even_dist=true
|
||||
Sampler *sampler = new DistributedSampler(4, 0, false, 0, 0, -1, true);
|
||||
EXPECT_NE(sampler, nullptr);
|
||||
// Note that with new, we have to explicitly delete the allocated object as shown below.
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create an ImageFolder Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data/";
|
||||
|
@ -261,6 +262,9 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess2) {
|
|||
|
||||
EXPECT_EQ(i, 11);
|
||||
iter->Stop();
|
||||
|
||||
// Delete allocated objects with raw pointers
|
||||
delete sampler;
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestDistributedSamplerSuccess3) {
|
||||
|
@ -318,7 +322,8 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerFail2) {
|
|||
// num_shards=4, shard_id=0, shuffle=false, num_samplers=0, seed=0, offset=5, even_dist=true
|
||||
// offset=5 which is greater than num_shards=4 --> will fail later
|
||||
Sampler *sampler = new DistributedSampler(4, 0, false, 0, 0, 5, false);
|
||||
EXPECT_NE(sampler, nullptr);
|
||||
// Note that with new, we have to explicitly delete the allocated object as shown below.
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create an ImageFolder Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data/";
|
||||
|
@ -328,6 +333,9 @@ TEST_F(MindDataTestPipeline, TestDistributedSamplerFail2) {
|
|||
// Iterate will fail because sampler is not initiated successfully.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
|
||||
// Delete allocated objects with raw pointers
|
||||
delete sampler;
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestDistributedSamplerFail3) {
|
||||
|
|
|
@ -42,7 +42,7 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) {
|
|||
|
||||
// Create auto contrast object with default values
|
||||
std::shared_ptr<TensorTransform> auto_contrast(new vision::AutoContrast());
|
||||
EXPECT_NE(auto_contrast, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({auto_contrast});
|
||||
|
@ -65,8 +65,8 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess1) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -91,7 +91,7 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) {
|
|||
|
||||
// Create auto contrast object
|
||||
std::shared_ptr<TensorTransform> auto_contrast(new vision::AutoContrast(10, {10, 20}));
|
||||
EXPECT_NE(auto_contrast, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({auto_contrast});
|
||||
|
@ -114,8 +114,8 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -125,18 +125,6 @@ TEST_F(MindDataTestPipeline, TestAutoContrastSuccess2) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestAutoContrastFail) {
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestAutoContrastFail with invalid params.";
|
||||
// Testing invalid cutoff < 0
|
||||
std::shared_ptr<TensorTransform> auto_contrast1(new vision::AutoContrast(-1.0));
|
||||
// FIXME: Need to check error Status is returned during CreateIterator
|
||||
EXPECT_NE(auto_contrast1, nullptr);
|
||||
// Testing invalid cutoff > 100
|
||||
std::shared_ptr<TensorTransform> auto_contrast2(new vision::AutoContrast(110.0, {10, 20}));
|
||||
EXPECT_NE(auto_contrast2, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCenterCrop) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with single integer input.";
|
||||
|
||||
|
@ -152,7 +140,7 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) {
|
|||
|
||||
// Create centre crop object with square crop
|
||||
std::shared_ptr<TensorTransform> centre_out1(new vision::CenterCrop({30}));
|
||||
EXPECT_NE(centre_out1, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({centre_out1});
|
||||
|
@ -175,8 +163,8 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -186,41 +174,6 @@ TEST_F(MindDataTestPipeline, TestCenterCrop) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCenterCropFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCenterCrop with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
|
||||
// center crop height value negative
|
||||
std::shared_ptr<TensorTransform> center_crop1(new mindspore::dataset::vision::CenterCrop({-32, 32}));
|
||||
EXPECT_NE(center_crop1, nullptr);
|
||||
// center crop width value negative
|
||||
std::shared_ptr<TensorTransform> center_crop2(new mindspore::dataset::vision::CenterCrop({32, -32}));
|
||||
EXPECT_NE(center_crop2, nullptr);
|
||||
// 0 value would result in nullptr
|
||||
std::shared_ptr<TensorTransform> center_crop3(new mindspore::dataset::vision::CenterCrop({0, 32}));
|
||||
EXPECT_NE(center_crop3, nullptr);
|
||||
// center crop with 3 values
|
||||
std::shared_ptr<TensorTransform> center_crop4(new mindspore::dataset::vision::CenterCrop({10, 20, 30}));
|
||||
EXPECT_NE(center_crop4, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCropFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCrop with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// wrong width
|
||||
std::shared_ptr<TensorTransform> crop1(new mindspore::dataset::vision::Crop({0, 0}, {32, -32}));
|
||||
EXPECT_NE(crop1, nullptr);
|
||||
// wrong height
|
||||
std::shared_ptr<TensorTransform> crop2(new mindspore::dataset::vision::Crop({0, 0}, {-32, -32}));
|
||||
EXPECT_NE(crop2, nullptr);
|
||||
// zero height
|
||||
std::shared_ptr<TensorTransform> crop3(new mindspore::dataset::vision::Crop({0, 0}, {0, 32}));
|
||||
EXPECT_NE(crop3, nullptr);
|
||||
// negative coordinates
|
||||
std::shared_ptr<TensorTransform> crop4(new mindspore::dataset::vision::Crop({-1, 0}, {32, 32}));
|
||||
EXPECT_NE(crop4, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutMixBatchSuccess1.";
|
||||
// Testing CutMixBatch on a batch of CHW images
|
||||
|
@ -233,7 +186,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> hwc_to_chw = std::make_shared<vision::HWC2CHW>();
|
||||
EXPECT_NE(hwc_to_chw, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({hwc_to_chw}, {"image"});
|
||||
|
@ -244,10 +197,9 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
|
|||
ds = ds->Batch(batch_size);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(number_of_classes);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -255,7 +207,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
|
|||
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNCHW, 1.0, 1.0);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op}, {"image", "label"});
|
||||
|
@ -273,16 +225,15 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess1) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// auto label = row["label"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
// MS_LOG(INFO) << "Label shape: " << label->shape();
|
||||
// EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 3 == image->shape()[1] &&
|
||||
// 32 == image->shape()[2] && 32 == image->shape()[3],
|
||||
// true);
|
||||
// EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] &&
|
||||
// number_of_classes == label->shape()[1],
|
||||
// true);
|
||||
auto image = row["image"];
|
||||
auto label = row["label"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
MS_LOG(INFO) << "Label shape: " << label.Shape();
|
||||
EXPECT_EQ(image.Shape().size() == 4 && batch_size == image.Shape()[0] && 3 == image.Shape()[1] &&
|
||||
32 == image.Shape()[2] && 32 == image.Shape()[3],
|
||||
true);
|
||||
EXPECT_EQ(label.Shape().size() == 2 && batch_size == label.Shape()[0] && number_of_classes == label.Shape()[1],
|
||||
true);
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -309,14 +260,15 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(number_of_classes);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op = std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op}, {"image", "label"});
|
||||
|
@ -334,16 +286,16 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchSuccess2) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// auto label = row["label"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
// MS_LOG(INFO) << "Label shape: " << label->shape();
|
||||
// EXPECT_EQ(image->shape().AsVector().size() == 4 && batch_size == image->shape()[0] && 32 == image->shape()[1] &&
|
||||
// 32 == image->shape()[2] && 3 == image->shape()[3],
|
||||
// true);
|
||||
// EXPECT_EQ(label->shape().AsVector().size() == 2 && batch_size == label->shape()[0] &&
|
||||
// number_of_classes == label->shape()[1],
|
||||
// true);
|
||||
auto image = row["image"];
|
||||
auto label = row["label"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
MS_LOG(INFO) << "Label shape: " << label.Shape();
|
||||
EXPECT_EQ(image.Shape().size() == 4 && batch_size == image.Shape()[0] && 32 == image.Shape()[1] &&
|
||||
32 == image.Shape()[2] && 3 == image.Shape()[3],
|
||||
true);
|
||||
EXPECT_EQ(label.Shape().size() == 2 && batch_size == label.Shape()[0] && number_of_classes == label.Shape()[1],
|
||||
true);
|
||||
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -368,7 +320,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -377,7 +329,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail1) {
|
|||
// Create CutMixBatch operation with invalid input, alpha<0
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, -1, 0.5);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op});
|
||||
|
@ -403,7 +355,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -412,7 +364,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail2) {
|
|||
// Create CutMixBatch operation with invalid input, prob<0
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 1, -0.5);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op});
|
||||
|
@ -438,7 +390,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -447,7 +399,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail3) {
|
|||
// Create CutMixBatch operation with invalid input, alpha=0 (boundary case)
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 0.0, 0.5);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op});
|
||||
|
@ -472,7 +424,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -481,7 +433,7 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) {
|
|||
// Create CutMixBatch operation with invalid input, prob>1
|
||||
std::shared_ptr<TensorTransform> cutmix_batch_op =
|
||||
std::make_shared<vision::CutMixBatch>(mindspore::dataset::ImageBatchFormat::kNHWC, 1, 1.5);
|
||||
EXPECT_NE(cutmix_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cutmix_batch_op});
|
||||
|
@ -492,30 +444,6 @@ TEST_F(MindDataTestPipeline, TestCutMixBatchFail4) {
|
|||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCutOutFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail1 with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// Create object for the tensor op
|
||||
// Invalid negative length
|
||||
std::shared_ptr<TensorTransform> cutout_op = std::make_shared<vision::CutOut>(-10);
|
||||
EXPECT_NE(cutout_op, nullptr);
|
||||
// Invalid negative number of patches
|
||||
cutout_op = std::make_shared<vision::CutOut>(10, -1);
|
||||
EXPECT_NE(cutout_op, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCutOutFail2) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOutFail2 with invalid params, boundary cases.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// Create object for the tensor op
|
||||
// Invalid zero length
|
||||
std::shared_ptr<TensorTransform> cutout_op = std::make_shared<vision::CutOut>(0);
|
||||
EXPECT_NE(cutout_op, nullptr);
|
||||
// Invalid zero number of patches
|
||||
cutout_op = std::make_shared<vision::CutOut>(10, 0);
|
||||
EXPECT_NE(cutout_op, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestCutOut) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCutOut.";
|
||||
|
||||
|
@ -531,10 +459,8 @@ TEST_F(MindDataTestPipeline, TestCutOut) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> cut_out1 = std::make_shared<vision::CutOut>(30, 5);
|
||||
EXPECT_NE(cut_out1, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> cut_out2 = std::make_shared<vision::CutOut>(30);
|
||||
EXPECT_NE(cut_out2, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({cut_out1, cut_out2});
|
||||
|
@ -557,8 +483,8 @@ TEST_F(MindDataTestPipeline, TestCutOut) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -583,6 +509,7 @@ TEST_F(MindDataTestPipeline, TestDecode) {
|
|||
|
||||
// Create Decode object
|
||||
vision::Decode decode = vision::Decode(true);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({decode});
|
||||
|
@ -605,8 +532,8 @@ TEST_F(MindDataTestPipeline, TestDecode) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
EXPECT_EQ(i, 20);
|
||||
|
@ -630,7 +557,7 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> channel_swap = std::make_shared<vision::HWC2CHW>();
|
||||
EXPECT_NE(channel_swap, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({channel_swap});
|
||||
|
@ -653,12 +580,12 @@ TEST_F(MindDataTestPipeline, TestHwcToChw) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
// check if the image is in NCHW
|
||||
// EXPECT_EQ(batch_size == image->shape()[0] && 3 == image->shape()[1] && 2268 == image->shape()[2] &&
|
||||
// 4032 == image->shape()[3],
|
||||
// true);
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
// Check if the image is in NCHW
|
||||
EXPECT_EQ(
|
||||
batch_size == image.Shape()[0] && 3 == image.Shape()[1] && 2268 == image.Shape()[2] && 4032 == image.Shape()[3],
|
||||
true);
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
EXPECT_EQ(i, 20);
|
||||
|
@ -677,7 +604,7 @@ TEST_F(MindDataTestPipeline, TestInvert) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> invert_op = std::make_shared<vision::Invert>();
|
||||
EXPECT_NE(invert_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({invert_op});
|
||||
|
@ -695,8 +622,8 @@ TEST_F(MindDataTestPipeline, TestInvert) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
EXPECT_EQ(i, 20);
|
||||
|
@ -707,7 +634,7 @@ TEST_F(MindDataTestPipeline, TestInvert) {
|
|||
|
||||
TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail1 with negative alpha parameter.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
|
||||
// Create a Cifar10 Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
|
||||
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", std::make_shared<RandomSampler>(false, 10));
|
||||
|
@ -720,7 +647,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -728,7 +655,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) {
|
|||
|
||||
// Create MixUpBatch operation with invalid input, alpha<0
|
||||
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(-1);
|
||||
EXPECT_NE(mixup_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({mixup_batch_op});
|
||||
|
@ -741,7 +668,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail1) {
|
|||
|
||||
TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMixUpBatchFail2 with zero alpha parameter.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
|
||||
// Create a Cifar10 Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
|
||||
std::shared_ptr<Dataset> ds = Cifar10(folder_path, "all", std::make_shared<RandomSampler>(false, 10));
|
||||
|
@ -754,7 +681,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
|
@ -762,7 +689,7 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchFail2) {
|
|||
|
||||
// Create MixUpBatch operation with invalid input, alpha<0 (boundary case)
|
||||
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(0.0);
|
||||
EXPECT_NE(mixup_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({mixup_batch_op});
|
||||
|
@ -788,14 +715,14 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>(2.0);
|
||||
EXPECT_NE(mixup_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({mixup_batch_op}, {"image", "label"});
|
||||
|
@ -813,8 +740,8 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess1) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -839,14 +766,14 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> one_hot_op = std::make_shared<transforms::OneHot>(10);
|
||||
EXPECT_NE(one_hot_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({one_hot_op}, {"label"});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> mixup_batch_op = std::make_shared<vision::MixUpBatch>();
|
||||
EXPECT_NE(mixup_batch_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({mixup_batch_op}, {"image", "label"});
|
||||
|
@ -864,8 +791,8 @@ TEST_F(MindDataTestPipeline, TestMixUpBatchSuccess2) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -890,7 +817,7 @@ TEST_F(MindDataTestPipeline, TestNormalize) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> normalize(new vision::Normalize({121.0, 115.0, 0.0}, {70.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({normalize});
|
||||
|
@ -913,8 +840,8 @@ TEST_F(MindDataTestPipeline, TestNormalize) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -924,35 +851,6 @@ TEST_F(MindDataTestPipeline, TestNormalize) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestNormalizeFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizeFail with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// std value at 0.0
|
||||
std::shared_ptr<TensorTransform> normalize1(
|
||||
new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize1, nullptr);
|
||||
// mean out of range
|
||||
std::shared_ptr<TensorTransform> normalize2(
|
||||
new mindspore::dataset::vision::Normalize({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize2, nullptr);
|
||||
// mean out of range
|
||||
std::shared_ptr<TensorTransform> normalize3(
|
||||
new mindspore::dataset::vision::Normalize({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize3, nullptr);
|
||||
// mean out of range
|
||||
std::shared_ptr<TensorTransform> normalize4(
|
||||
new mindspore::dataset::vision::Normalize({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize4, nullptr);
|
||||
// normalize with 2 values (not 3 values) for mean
|
||||
std::shared_ptr<TensorTransform> normalize5(
|
||||
new mindspore::dataset::vision::Normalize({121.0, 115.0}, {70.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalize5, nullptr);
|
||||
// normalize with 2 values (not 3 values) for standard deviation
|
||||
std::shared_ptr<TensorTransform> normalize6(
|
||||
new mindspore::dataset::vision::Normalize({121.0, 115.0, 100.0}, {68.0, 71.0}));
|
||||
EXPECT_NE(normalize6, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestNormalizePad) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePad.";
|
||||
|
||||
|
@ -969,7 +867,7 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) {
|
|||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> normalizepad(
|
||||
new vision::NormalizePad({121.0, 115.0, 100.0}, {70.0, 68.0, 71.0}, "float32"));
|
||||
EXPECT_NE(normalizepad, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({normalizepad});
|
||||
|
@ -987,9 +885,10 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// EXPECT_EQ(image->shape()[2], 4);
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
EXPECT_EQ(image.Shape()[2], 4);
|
||||
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -999,27 +898,6 @@ TEST_F(MindDataTestPipeline, TestNormalizePad) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestNormalizePadFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestNormalizePadFail with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// std value at 0.0
|
||||
std::shared_ptr<TensorTransform> normalizepad1(
|
||||
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalizepad1, nullptr);
|
||||
// normalizepad with 2 values (not 3 values) for mean
|
||||
std::shared_ptr<TensorTransform> normalizepad2(
|
||||
new mindspore::dataset::vision::NormalizePad({121.0, 115.0}, {70.0, 68.0, 71.0}));
|
||||
EXPECT_NE(normalizepad2, nullptr);
|
||||
// normalizepad with 2 values (not 3 values) for standard deviation
|
||||
std::shared_ptr<TensorTransform> normalizepad3(
|
||||
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0}));
|
||||
EXPECT_NE(normalizepad3, nullptr);
|
||||
// normalizepad with invalid dtype
|
||||
std::shared_ptr<TensorTransform> normalizepad4(
|
||||
new mindspore::dataset::vision::NormalizePad({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123"));
|
||||
EXPECT_NE(normalizepad4, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestPad) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestPad.";
|
||||
|
||||
|
@ -1035,13 +913,9 @@ TEST_F(MindDataTestPipeline, TestPad) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> pad_op1(new vision::Pad({1, 2, 3, 4}, {0}, BorderType::kSymmetric));
|
||||
EXPECT_NE(pad_op1, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> pad_op2(new vision::Pad({1}, {1, 1, 1}, BorderType::kEdge));
|
||||
EXPECT_NE(pad_op2, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> pad_op3(new vision::Pad({1, 4}));
|
||||
EXPECT_NE(pad_op3, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({pad_op1, pad_op2, pad_op3});
|
||||
|
@ -1064,8 +938,8 @@ TEST_F(MindDataTestPipeline, TestPad) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
|
|
@ -30,7 +30,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess1Shr) {
|
|||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess1Shr.";
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
|
@ -54,8 +55,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess1Shr) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -68,11 +69,13 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess2Auto) {
|
|||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess2Auto.";
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
// Use auto for raw pointers
|
||||
// Note that with auto and new, we have to explicitly delete the allocated object as shown below.
|
||||
auto random_rotation_op(new vision::RandomRotation({90.0}));
|
||||
auto bound_box_augment_op(new vision::BoundingBoxAugment({random_rotation_op}, 1.0));
|
||||
|
||||
|
@ -92,21 +95,26 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess2Auto) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 3);
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Delete allocated objects with raw pointers
|
||||
delete random_rotation_op;
|
||||
delete bound_box_augment_op;
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess3Obj) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestBoundingBoxAugmentSuccess3Obj.";
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
|
@ -130,8 +138,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentSuccess3Obj) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -145,7 +153,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail1) {
|
|||
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
|
@ -169,7 +178,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail2) {
|
|||
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
|
@ -193,7 +203,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail3) {
|
|||
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create BoundingBoxAugment op with invalid nullptr transform
|
||||
|
@ -214,7 +225,8 @@ TEST_F(MindDataTestPipeline, TestBoundingBoxAugmentFail4) {
|
|||
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
|
|
|
@ -46,11 +46,11 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess1) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0, 0.0));
|
||||
EXPECT_NE(rescale, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Convert to the same type
|
||||
std::shared_ptr<TensorTransform> type_cast(new transforms::TypeCast("uint8"));
|
||||
EXPECT_NE(type_cast, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
ds = ds->Map({rescale, type_cast}, {"image"});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
@ -81,7 +81,7 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(1.0 / 255, 1.0));
|
||||
EXPECT_NE(rescale, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
ds = ds->Map({rescale}, {"image"});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
@ -98,8 +98,8 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -109,14 +109,6 @@ TEST_F(MindDataTestPipeline, TestRescaleSucess2) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestRescaleFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestRescaleFail with invalid params.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// incorrect negative rescale parameter
|
||||
std::shared_ptr<TensorTransform> rescale(new mindspore::dataset::vision::Rescale(-1.0, 0.0));
|
||||
EXPECT_NE(rescale, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestResize1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize1 with single integer input.";
|
||||
// Create an ImageFolder Dataset
|
||||
|
@ -131,7 +123,7 @@ TEST_F(MindDataTestPipeline, TestResize1) {
|
|||
|
||||
// Create resize object with single integer input
|
||||
std::shared_ptr<TensorTransform> resize_op(new vision::Resize({30}));
|
||||
EXPECT_NE(resize_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({resize_op});
|
||||
|
@ -154,8 +146,8 @@ TEST_F(MindDataTestPipeline, TestResize1) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -165,33 +157,18 @@ TEST_F(MindDataTestPipeline, TestResize1) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestResizeFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResize with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// negative resize value
|
||||
std::shared_ptr<TensorTransform> resize_op1(new mindspore::dataset::vision::Resize({30, -30}));
|
||||
EXPECT_NE(resize_op1, nullptr);
|
||||
// zero resize value
|
||||
std::shared_ptr<TensorTransform> resize_op2(new mindspore::dataset::vision::Resize({0, 30}));
|
||||
EXPECT_NE(resize_op2, nullptr);
|
||||
// resize with 3 values
|
||||
std::shared_ptr<TensorTransform> resize_op3(new mindspore::dataset::vision::Resize({30, 20, 10}));
|
||||
EXPECT_NE(resize_op3, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxSuccess.";
|
||||
// Create an VOC Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
|
||||
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
std::shared_ptr<Dataset> ds =
|
||||
VOC(folder_path, "Detection", "train", {}, true, std::make_shared<SequentialSampler>(0, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({30}));
|
||||
EXPECT_NE(resize_with_bbox_op, nullptr);
|
||||
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({30, 30}));
|
||||
EXPECT_NE(resize_with_bbox_op1, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({resize_with_bbox_op, resize_with_bbox_op1}, {"image", "bbox"}, {"image", "bbox"}, {"image", "bbox"});
|
||||
|
@ -209,8 +186,8 @@ TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -218,38 +195,3 @@ TEST_F(MindDataTestPipeline, TestResizeWithBBoxSuccess) {
|
|||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestResizeWithBBoxFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestResizeWithBBoxFail with invalid parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// Testing negative resize value
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op(new vision::ResizeWithBBox({10, -10}));
|
||||
EXPECT_NE(resize_with_bbox_op, nullptr);
|
||||
// Testing negative resize value
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op1(new vision::ResizeWithBBox({-10}));
|
||||
EXPECT_NE(resize_with_bbox_op1, nullptr);
|
||||
// Testinig zero resize value
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op2(new vision::ResizeWithBBox({0, 10}));
|
||||
EXPECT_NE(resize_with_bbox_op2, nullptr);
|
||||
// Testing resize with 3 values
|
||||
std::shared_ptr<TensorTransform> resize_with_bbox_op3(new vision::ResizeWithBBox({10, 10, 10}));
|
||||
EXPECT_NE(resize_with_bbox_op3, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestVisionOperationName) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVisionOperationName.";
|
||||
|
||||
std::string correct_name;
|
||||
|
||||
// Create object for the tensor op, and check the name
|
||||
/* FIXME - Update and move test to IR level
|
||||
std::shared_ptr<TensorOperation> random_vertical_flip_op = vision::RandomVerticalFlip(0.5);
|
||||
correct_name = "RandomVerticalFlip";
|
||||
EXPECT_EQ(correct_name, random_vertical_flip_op->Name());
|
||||
|
||||
// Create object for the tensor op, and check the name
|
||||
std::shared_ptr<TensorOperation> softDvpp_decode_resize_jpeg_op = vision::SoftDvppDecodeResizeJpeg({1, 1});
|
||||
correct_name = "SoftDvppDecodeResizeJpeg";
|
||||
EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name());
|
||||
*/
|
||||
}
|
||||
|
|
|
@ -66,8 +66,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess1Shr) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -87,6 +87,7 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
// Use auto for raw pointers
|
||||
// Note that with auto and new, we have to explicitly delete the allocated object as shown below.
|
||||
// Valid case: TensorTransform is not null and probability is between (0,1)
|
||||
auto invert_op(new vision::Invert());
|
||||
auto equalize_op(new vision::Equalize());
|
||||
|
@ -118,8 +119,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -127,6 +128,12 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess2Auto) {
|
|||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Delete allocated objects with raw pointers
|
||||
delete invert_op;
|
||||
delete equalize_op;
|
||||
delete resize_op;
|
||||
delete random_select_subpolicy_op;
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess3Obj) {
|
||||
|
@ -169,8 +176,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess3Obj) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -221,8 +228,8 @@ TEST_F(MindDataTestPipeline, TestRandomSelectSubpolicySuccess4MultiPolicy) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
|
|
@ -36,9 +36,9 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess1) {
|
|||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
|
||||
vision::SoftDvppDecodeRandomCropResizeJpeg({500}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpeg({500}));
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
|
||||
|
@ -78,9 +78,9 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) {
|
|||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create objects for the tensor ops
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(new
|
||||
vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg, nullptr);
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_random_crop_resize_jpeg(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600}, {0.25, 0.75}, {0.5, 1.25}, 20));
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({soft_dvpp_decode_random_crop_resize_jpeg}, {"image"});
|
||||
|
@ -110,50 +110,6 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegSuccess2) {
|
|||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeRandomCropResizeJpegFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg1(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500, 600}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg1, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg2(new vision::SoftDvppDecodeRandomCropResizeJpeg({-500}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg2, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg3(new vision::SoftDvppDecodeRandomCropResizeJpeg({500, 600, 700}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg3, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg4(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {-0.1, 0.9}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg4, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max)
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg5(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.6, 0.2}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg5, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg6(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.6, 0.7}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg6, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg7(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {-0.2, 0.4}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg7, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max)
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg8(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.4, 0.2}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg8, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg9(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg9, nullptr);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1
|
||||
auto soft_dvpp_decode_random_crop_resize_jpeg10(new vision::SoftDvppDecodeRandomCropResizeJpeg({500}, {0.5, 0.9}, {0.1, 0.2}, 0));
|
||||
EXPECT_NE(soft_dvpp_decode_random_crop_resize_jpeg10, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegSuccess1 with single integer input.";
|
||||
// Create an ImageFolder Dataset
|
||||
|
@ -168,7 +124,7 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess1) {
|
|||
|
||||
// Create SoftDvppDecodeResizeJpeg object with single integer input
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({1134}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
|
||||
|
@ -206,7 +162,7 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) {
|
|||
|
||||
// Create SoftDvppDecodeResizeJpeg object with single integer input
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op(new vision::SoftDvppDecodeResizeJpeg({100, 200}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op, nullptr);
|
||||
// Note: No need to check for output after calling API class constructor
|
||||
|
||||
// Create a Map operation on ds
|
||||
ds = ds->Map({soft_dvpp_decode_resize_jpeg_op});
|
||||
|
@ -234,23 +190,3 @@ TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegSuccess2) {
|
|||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestSoftDvppDecodeResizeJpegFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestSoftDvppDecodeResizeJpegFail with incorrect size.";
|
||||
// FIXME: For error tests, need to check for failure from CreateIterator execution
|
||||
// CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpeg({}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op1, nullptr);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must be a vector of one or two values
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op2(new vision::SoftDvppDecodeResizeJpeg({1, 2, 3}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op2, nullptr);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op3(new vision::SoftDvppDecodeResizeJpeg({20, -20}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op3, nullptr);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorTransform> soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpeg({0}));
|
||||
EXPECT_NE(soft_dvpp_decode_resize_jpeg_op4, nullptr);
|
||||
}
|
||||
|
|
|
@ -63,8 +63,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps1Shr) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -89,6 +89,7 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) {
|
|||
|
||||
// Create objects for the tensor ops
|
||||
// Use auto for raw pointers
|
||||
// Note that with auto and new, we have to explicitly delete the allocated object as shown below.
|
||||
auto resize_op(new vision::Resize({30, 30}));
|
||||
auto random_crop_op(new vision::RandomCrop({28, 28}));
|
||||
auto center_crop_op(new vision::CenterCrop({16, 16}));
|
||||
|
@ -110,8 +111,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
@ -119,6 +120,12 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps2Auto) {
|
|||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Delete allocated objects with raw pointers
|
||||
delete resize_op;
|
||||
delete random_crop_op;
|
||||
delete center_crop_op;
|
||||
delete uniform_aug_op;
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestUniformAugWithOps3Obj) {
|
||||
|
@ -157,8 +164,8 @@ TEST_F(MindDataTestPipeline, TestUniformAugWithOps3Obj) {
|
|||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
// auto image = row["image"];
|
||||
// MS_LOG(INFO) << "Tensor image shape: " << image->shape();
|
||||
auto image = row["image"];
|
||||
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
|
||||
iter->GetNextRow(&row);
|
||||
}
|
||||
|
||||
|
|
|
@ -17,9 +17,6 @@
|
|||
#include <memory>
|
||||
#include <string>
|
||||
#include "common/common.h"
|
||||
#include "minddata/dataset/include/datasets.h"
|
||||
#include "minddata/dataset/include/transforms.h"
|
||||
#include "minddata/dataset/include/vision.h"
|
||||
#include "minddata/dataset/kernels/ir/vision/vision_ir.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
|
@ -29,67 +26,345 @@ class MindDataTestIRVision : public UT::DatasetOpTesting {
|
|||
MindDataTestIRVision() = default;
|
||||
};
|
||||
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestAutoContrastIRFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestAutoContrastIRFail1.";
|
||||
TEST_F(MindDataTestIRVision, TestAutoContrastFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestAutoContrastFail1.";
|
||||
|
||||
// Testing invalid cutoff < 0
|
||||
std::shared_ptr<TensorOperation> auto_contrast1(new vision::AutoContrastOperation(-1.0,{}));
|
||||
ASSERT_NE(auto_contrast1, nullptr);
|
||||
|
||||
std::shared_ptr<TensorOperation> auto_contrast1(new vision::AutoContrastOperation(-1.0, {}));
|
||||
Status rc1 = auto_contrast1->ValidateParams();
|
||||
EXPECT_ERROR(rc1);
|
||||
|
||||
// Testing invalid cutoff > 100
|
||||
std::shared_ptr<TensorOperation> auto_contrast2(new vision::AutoContrastOperation(110.0, {10, 20}));
|
||||
ASSERT_NE(auto_contrast2, nullptr);
|
||||
|
||||
Status rc2 = auto_contrast2->ValidateParams();
|
||||
EXPECT_ERROR(rc2);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestCenterCropFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCenterCrop with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// center crop height value negative
|
||||
std::shared_ptr<TensorOperation> center_crop1(new vision::CenterCropOperation({-32, 32}));
|
||||
rc = center_crop1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// center crop width value negative
|
||||
std::shared_ptr<TensorOperation> center_crop2(new vision::CenterCropOperation({32, -32}));
|
||||
rc = center_crop2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// 0 value would result in nullptr
|
||||
std::shared_ptr<TensorOperation> center_crop3(new vision::CenterCropOperation({0, 32}));
|
||||
rc = center_crop3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// center crop with 3 values
|
||||
std::shared_ptr<TensorOperation> center_crop4(new vision::CenterCropOperation({10, 20, 30}));
|
||||
rc = center_crop4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestCropFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCrop with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// wrong width
|
||||
std::shared_ptr<TensorOperation> crop1(new vision::CropOperation({0, 0}, {32, -32}));
|
||||
rc = crop1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// wrong height
|
||||
std::shared_ptr<TensorOperation> crop2(new vision::CropOperation({0, 0}, {-32, -32}));
|
||||
rc = crop2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// zero height
|
||||
std::shared_ptr<TensorOperation> crop3(new vision::CropOperation({0, 0}, {0, 32}));
|
||||
rc = crop3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// negative coordinates
|
||||
std::shared_ptr<TensorOperation> crop4(new vision::CropOperation({-1, 0}, {32, 32}));
|
||||
rc = crop4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestCutOutFail1) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCutOutFail1 with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// Create object for the tensor op
|
||||
// Invalid negative length
|
||||
std::shared_ptr<TensorOperation> cutout_op = std::make_shared<vision::CutOutOperation>(-10, 1);
|
||||
rc = cutout_op->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// Invalid negative number of patches
|
||||
cutout_op = std::make_shared<vision::CutOutOperation>(10, -1);
|
||||
rc = cutout_op->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestCutOutFail2) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestCutOutFail2 with invalid params, boundary cases.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// Create object for the tensor op
|
||||
// Invalid zero length
|
||||
std::shared_ptr<TensorOperation> cutout_op = std::make_shared<vision::CutOutOperation>(0, 1);
|
||||
rc = cutout_op->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// Invalid zero number of patches
|
||||
cutout_op = std::make_shared<vision::CutOutOperation>(10, 0);
|
||||
rc = cutout_op->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestNormalizeFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestNormalizeFail with invalid parameters.";
|
||||
|
||||
// std value at 0.0
|
||||
Status rc;
|
||||
|
||||
// std value 0.0 out of range
|
||||
std::shared_ptr<TensorOperation> normalize1(new vision::NormalizeOperation({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}));
|
||||
ASSERT_NE(normalize1, nullptr);
|
||||
rc = normalize1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
Status rc1 = normalize1->ValidateParams();
|
||||
EXPECT_ERROR(rc1);
|
||||
// std value 256.0 out of range
|
||||
std::shared_ptr<TensorOperation> normalize2(
|
||||
new vision::NormalizeOperation({121.0, 10.0, 100.0}, {256.0, 68.0, 71.0}));
|
||||
rc = normalize2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// mean out of range
|
||||
std::shared_ptr<TensorOperation> normalize2(new vision::NormalizeOperation({121.0, 0.0, 100.0}, {256.0, 68.0, 71.0}));
|
||||
ASSERT_NE(normalize2, nullptr);
|
||||
|
||||
Status rc2 = normalize2->ValidateParams();
|
||||
EXPECT_ERROR(rc2);
|
||||
|
||||
// mean out of range
|
||||
// mean value 256.0 out of range
|
||||
std::shared_ptr<TensorOperation> normalize3(new vision::NormalizeOperation({256.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
|
||||
ASSERT_NE(normalize3, nullptr);
|
||||
rc = normalize3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
Status rc3 = normalize3->ValidateParams();
|
||||
EXPECT_ERROR(rc3);
|
||||
|
||||
// mean out of range
|
||||
// mean value 0.0 out of range
|
||||
std::shared_ptr<TensorOperation> normalize4(new vision::NormalizeOperation({-1.0, 0.0, 100.0}, {70.0, 68.0, 71.0}));
|
||||
ASSERT_NE(normalize4, nullptr);
|
||||
|
||||
Status rc4 = normalize4->ValidateParams();
|
||||
EXPECT_ERROR(rc4);
|
||||
rc = normalize4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// normalize with 2 values (not 3 values) for mean
|
||||
std::shared_ptr<TensorOperation> normalize5(new vision::NormalizeOperation({121.0, 115.0}, {70.0, 68.0, 71.0}));
|
||||
ASSERT_NE(normalize5, nullptr);
|
||||
|
||||
Status rc5 = normalize5->ValidateParams();
|
||||
EXPECT_ERROR(rc5);
|
||||
rc = normalize5->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// normalize with 2 values (not 3 values) for standard deviation
|
||||
std::shared_ptr<TensorOperation> normalize6(new vision::NormalizeOperation({121.0, 115.0, 100.0}, {68.0, 71.0}));
|
||||
ASSERT_NE(normalize6, nullptr);
|
||||
|
||||
Status rc6 = normalize6->ValidateParams();
|
||||
EXPECT_ERROR(rc6);
|
||||
rc = normalize6->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestNormalizePadFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestNormalizePadFail with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// std value at 0.0
|
||||
std::shared_ptr<TensorOperation> normalizepad1(
|
||||
new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {0.0, 68.0, 71.0}, "float32"));
|
||||
rc = normalizepad1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// normalizepad with 2 values (not 3 values) for mean
|
||||
std::shared_ptr<TensorOperation> normalizepad2(
|
||||
new vision::NormalizePadOperation({121.0, 115.0}, {70.0, 68.0, 71.0}, "float32"));
|
||||
rc = normalizepad2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// normalizepad with 2 values (not 3 values) for standard deviation
|
||||
std::shared_ptr<TensorOperation> normalizepad3(
|
||||
new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {68.0, 71.0}, "float32"));
|
||||
rc = normalizepad3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// normalizepad with invalid dtype
|
||||
std::shared_ptr<TensorOperation> normalizepad4(
|
||||
new vision::NormalizePadOperation({121.0, 115.0, 100.0}, {68.0, 71.0, 71.0}, "123"));
|
||||
rc = normalizepad4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestRescaleFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestRescaleFail with invalid params.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// incorrect negative rescale parameter
|
||||
std::shared_ptr<TensorOperation> rescale(new vision::RescaleOperation(-1.0, 0.0));
|
||||
rc = rescale->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestResizeFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestResize with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// negative resize value
|
||||
std::shared_ptr<TensorOperation> resize_op1(new vision::ResizeOperation({30, -30}, InterpolationMode::kLinear));
|
||||
rc = resize_op1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// zero resize value
|
||||
std::shared_ptr<TensorOperation> resize_op2(new vision::ResizeOperation({0, 30}, InterpolationMode::kLinear));
|
||||
rc = resize_op2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// resize with 3 values
|
||||
std::shared_ptr<TensorOperation> resize_op3(new vision::ResizeOperation({30, 20, 10}, InterpolationMode::kLinear));
|
||||
rc = resize_op3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestResizeWithBBoxFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestResizeWithBBoxFail with invalid parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// Testing negative resize value
|
||||
std::shared_ptr<TensorOperation> resize_with_bbox_op(
|
||||
new vision::ResizeWithBBoxOperation({10, -10}, InterpolationMode::kLinear));
|
||||
EXPECT_NE(resize_with_bbox_op, nullptr);
|
||||
rc = resize_with_bbox_op->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// Testing negative resize value
|
||||
std::shared_ptr<TensorOperation> resize_with_bbox_op1(
|
||||
new vision::ResizeWithBBoxOperation({-10}, InterpolationMode::kLinear));
|
||||
EXPECT_NE(resize_with_bbox_op1, nullptr);
|
||||
rc = resize_with_bbox_op1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// Testing zero resize value
|
||||
std::shared_ptr<TensorOperation> resize_with_bbox_op2(
|
||||
new vision::ResizeWithBBoxOperation({0, 10}, InterpolationMode::kLinear));
|
||||
EXPECT_NE(resize_with_bbox_op2, nullptr);
|
||||
rc = resize_with_bbox_op2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// Testing resize with 3 values
|
||||
std::shared_ptr<TensorOperation> resize_with_bbox_op3(
|
||||
new vision::ResizeWithBBoxOperation({10, 10, 10}, InterpolationMode::kLinear));
|
||||
EXPECT_NE(resize_with_bbox_op3, nullptr);
|
||||
rc = resize_with_bbox_op3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestSoftDvppDecodeRandomCropResizeJpegFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestSoftDvppDecodeRandomCropResizeJpegFail with incorrect parameters.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg1(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({-500, 600}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg2(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({-500}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: size must be a vector of one or two values
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg3(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500, 600, 700}, {0.08, 1.0}, {3. / 4., 4. / 3.}, 10));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be greater than or equal to 0
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg4(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {-0.1, 0.9}, {3. / 4., 4. / 3.}, 1));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be in the format of (min, max)
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg5(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.6, 0.2}, {3. / 4., 4. / 3.}, 1));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg5->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: scale must be a vector of two values
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg6(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.6, 0.7}, {3. / 4., 4. / 3.}, 1));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg6->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be greater than or equal to 0
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg7(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {-0.2, 0.4}, 5));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg7->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be in the format of (min, max)
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg8(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.4, 0.2}, 5));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg8->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: ratio must be a vector of two values
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg9(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.1, 0.2, 0.3}, 5));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg9->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeRandomCropResizeJpeg: max_attempts must be greater than or equal to 1
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_random_crop_resize_jpeg10(
|
||||
new vision::SoftDvppDecodeRandomCropResizeJpegOperation({500}, {0.5, 0.9}, {0.1, 0.2}, 0));
|
||||
rc = soft_dvpp_decode_random_crop_resize_jpeg10->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestSoftDvppDecodeResizeJpegFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestSoftDvppDecodeResizeJpegFail with incorrect size.";
|
||||
|
||||
Status rc;
|
||||
|
||||
// CSoftDvppDecodeResizeJpeg: size must be a vector of one or two values
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_resize_jpeg_op1(new vision::SoftDvppDecodeResizeJpegOperation({}));
|
||||
rc = soft_dvpp_decode_resize_jpeg_op1->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must be a vector of one or two values
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_resize_jpeg_op2(
|
||||
new vision::SoftDvppDecodeResizeJpegOperation({1, 2, 3}));
|
||||
rc = soft_dvpp_decode_resize_jpeg_op2->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_resize_jpeg_op3(
|
||||
new vision::SoftDvppDecodeResizeJpegOperation({20, -20}));
|
||||
rc = soft_dvpp_decode_resize_jpeg_op3->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
|
||||
// SoftDvppDecodeResizeJpeg: size must only contain positive integers
|
||||
std::shared_ptr<TensorOperation> soft_dvpp_decode_resize_jpeg_op4(new vision::SoftDvppDecodeResizeJpegOperation({0}));
|
||||
rc = soft_dvpp_decode_resize_jpeg_op4->ValidateParams();
|
||||
EXPECT_ERROR(rc);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestIRVision, TestVisionOperationName) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestIRVision-TestVisionOperationName.";
|
||||
|
||||
std::string correct_name;
|
||||
|
||||
// Create object for the tensor op, and check the name
|
||||
std::shared_ptr<TensorOperation> random_vertical_flip_op = std::make_shared<vision::RandomVerticalFlipOperation>(0.5);
|
||||
correct_name = "RandomVerticalFlip";
|
||||
EXPECT_EQ(correct_name, random_vertical_flip_op->Name());
|
||||
|
||||
// Create object for the tensor op, and check the name
|
||||
std::shared_ptr<TensorOperation> softDvpp_decode_resize_jpeg_op(
|
||||
new vision::SoftDvppDecodeResizeJpegOperation({1, 1}));
|
||||
correct_name = "SoftDvppDecodeResizeJpeg";
|
||||
EXPECT_EQ(correct_name, softDvpp_decode_resize_jpeg_op->Name());
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue