!13164 optimize GPU format transform

From: @limingqi107
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-03-16 09:27:28 +08:00 committed by Gitee
commit 24f1bc268d
2 changed files with 42 additions and 18 deletions

View File

@ -178,6 +178,21 @@ void SetTensorDeviceInfo(const kernel::KernelBuildInfo &selected_kernel_info, co
} }
} }
void TransformFormatPosition(std::vector<size_t> *format_position, size_t position_num) {
MS_EXCEPTION_IF_NULL(format_position);
if (format_position->size() == 0) {
return;
}
// If the inserted position is kAllPositions, then insert all the positions.
if ((*format_position)[0] == kAllPositions) {
format_position->clear();
for (size_t index = 0; index < position_num; index++) {
format_position->push_back(index);
}
}
}
bool IsNeedProcessFormatInfo(const CNodePtr &kernel_node, const std::vector<TypeId> &inputs_type) { bool IsNeedProcessFormatInfo(const CNodePtr &kernel_node, const std::vector<TypeId> &inputs_type) {
auto ms_context = MsContext::GetInstance(); auto ms_context = MsContext::GetInstance();
MS_EXCEPTION_IF_NULL(ms_context); MS_EXCEPTION_IF_NULL(ms_context);
@ -198,20 +213,28 @@ bool IsNeedProcessFormatInfo(const CNodePtr &kernel_node, const std::vector<Type
if (inputs_type.size() == 0) { if (inputs_type.size() == 0) {
return false; return false;
} }
auto inputs_format_position = iter->second.first; auto inputs_format_position = iter->second.first;
// If input position is empty, then insert all the input positions, because the input numbers of this op are variable.
if (inputs_format_position.size() == 0) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
for (size_t input_index = 0; input_index < input_num; input_index++) { TransformFormatPosition(&inputs_format_position, input_num);
inputs_format_position.push_back(input_index);
}
}
for (const auto &input_format_position : inputs_format_position) { for (const auto &input_format_position : inputs_format_position) {
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, input_format_position); auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, input_format_position);
// Only support the transformer between NCHW and NHWC, so need the shape is 4 dimension.
if (input_shape.size() != 4) { if (input_shape.size() != 4) {
return false; return false;
} }
} }
auto outputs_format_position = iter->second.second;
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
TransformFormatPosition(&outputs_format_position, output_num);
for (const auto &output_format_position : outputs_format_position) {
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, output_format_position);
// Only support the transformer between NCHW and NHWC, so need the shape is 4 dimension.
if (output_shape.size() != 4) {
return false;
}
}
return true; return true;
} }
@ -226,13 +249,8 @@ void UpdateKernelFormatInfo(const CNodePtr &kernel_node, const std::vector<TypeI
auto cal_format = (inputs_type[0] == kNumberTypeFloat16) ? kOpFormat_NHWC : kOpFormat_NCHW; auto cal_format = (inputs_type[0] == kNumberTypeFloat16) ? kOpFormat_NHWC : kOpFormat_NCHW;
MS_LOG(DEBUG) << "Kernel node: " << kernel_node->fullname_with_scope() << ", format: " << cal_format; MS_LOG(DEBUG) << "Kernel node: " << kernel_node->fullname_with_scope() << ", format: " << cal_format;
auto inputs_format_position = iter->second.first; auto inputs_format_position = iter->second.first;
// If input position is empty, then insert all the input positions, because the input numbers of this op are variable.
if (inputs_format_position.size() == 0) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
for (size_t input_index = 0; input_index < input_num; input_index++) { TransformFormatPosition(&inputs_format_position, input_num);
inputs_format_position.push_back(input_index);
}
}
for (const auto &input_format_position : inputs_format_position) { for (const auto &input_format_position : inputs_format_position) {
if (input_format_position >= inputs_format->size()) { if (input_format_position >= inputs_format->size()) {
MS_LOG(EXCEPTION) << "The position [" << input_format_position << "] is out of range of the input size [" MS_LOG(EXCEPTION) << "The position [" << input_format_position << "] is out of range of the input size ["
@ -240,7 +258,10 @@ void UpdateKernelFormatInfo(const CNodePtr &kernel_node, const std::vector<TypeI
} }
(*inputs_format)[input_format_position] = cal_format; (*inputs_format)[input_format_position] = cal_format;
} }
auto outputs_format_position = iter->second.second; auto outputs_format_position = iter->second.second;
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
TransformFormatPosition(&outputs_format_position, output_num);
for (const auto &output_format_position : outputs_format_position) { for (const auto &output_format_position : outputs_format_position) {
if (output_format_position >= outputs_format->size()) { if (output_format_position >= outputs_format->size()) {
MS_LOG(EXCEPTION) << "The position [" << output_format_position << "] is out of range of the output size [" MS_LOG(EXCEPTION) << "The position [" << output_format_position << "] is out of range of the output size ["

View File

@ -32,8 +32,11 @@
namespace mindspore { namespace mindspore {
namespace device { namespace device {
namespace gpu { namespace gpu {
// map<opName, (inputFormatPosition, outputFormatPosition)>, used for getting the insert position of format transform. const size_t kAllPositions = SIZE_MAX;
// If input position is empty, then insert all the input positions, because the input numbers of this op are variable.
// Map<opName, (inputFormatPosition, outputFormatPosition)>, used for getting the inserted position of format transform.
// If the inserted position is kAllPositions, then insert all the positions, because the input or output numbers of
// this op are variable.
static std::map<std::string, std::pair<std::vector<size_t>, std::vector<size_t>>> kKernelFormatPositionMap = { static std::map<std::string, std::pair<std::vector<size_t>, std::vector<size_t>>> kKernelFormatPositionMap = {
// Format sensitive. // Format sensitive.
{prim::kPrimConv2D->name(), {{0, 1}, {0}}}, {prim::kPrimConv2D->name(), {{0, 1}, {0}}},
@ -58,8 +61,8 @@ static std::map<std::string, std::pair<std::vector<size_t>, std::vector<size_t>>
{prim::kPrimRelu6Grad->name(), {{0, 1}, {0}}}, {prim::kPrimRelu6Grad->name(), {{0, 1}, {0}}},
{kSliceOpName, {{0}, {0}}}, {kSliceOpName, {{0}, {0}}},
{kTensorAddOpName, {{0, 1}, {0}}}, {kTensorAddOpName, {{0, 1}, {0}}},
{prim::kPrimConcat->name(), {{}, {0}}}, {prim::kPrimConcat->name(), {{kAllPositions}, {0}}},
{prim::kPrimAddN->name(), {{}, {0}}}, {prim::kPrimAddN->name(), {{kAllPositions}, {0}}},
}; };
void SetKernelInfo(const CNodePtr &kernel_node, KernelType kernel_type = KernelType::UNKNOWN_KERNEL_TYPE); void SetKernelInfo(const CNodePtr &kernel_node, KernelType kernel_type = KernelType::UNKNOWN_KERNEL_TYPE);