modelzoo wide_and_deep_multitable

This commit is contained in:
yao_yf 2020-08-17 15:53:44 +08:00
parent 68ba6532c4
commit 245415f5bd
13 changed files with 1585 additions and 6 deletions

View File

@ -69,8 +69,8 @@ bool EmbeddingLookUpCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto input_addr = reinterpret_cast<float *>(inputs[0]->addr);
auto indices_addr = reinterpret_cast<int *>(inputs[1]->addr);
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
const size_t thread_num = 8;
std::thread threads[8];
const size_t thread_num = 16;
std::thread threads[16];
size_t task_proc_lens = (indices_lens_ + thread_num - 1) / thread_num;
size_t i;
size_t task_offset = 0;

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_imagenet."""
"""train_dataset."""
import os

View File

@ -164,9 +164,6 @@ class WideDeepModel(nn.Cell):
init_acts = [('Wide_b', [1], self.emb_init)]
var_map = init_var_dict(self.init_args, init_acts)
self.wide_b = var_map["Wide_b"]
if parameter_server:
self.wide_w.set_param_ps()
self.embedding_table.set_param_ps()
self.dense_layer_1 = DenseLayer(self.all_dim_list[0],
self.all_dim_list[1],
self.weight_bias_init,
@ -217,6 +214,8 @@ class WideDeepModel(nn.Cell):
self.deep_embeddinglookup = nn.EmbeddingLookup(self.vocab_size, self.emb_dim)
self.wide_embeddinglookup = nn.EmbeddingLookup(self.vocab_size, 1)
self.embedding_table = self.deep_embeddinglookup.embedding_table
self.wide_w.set_param_ps()
self.embedding_table.set_param_ps()
else:
self.deep_embeddinglookup = nn.EmbeddingLookup(self.vocab_size, self.emb_dim, target='DEVICE')
self.wide_embeddinglookup = nn.EmbeddingLookup(self.vocab_size, 1, target='DEVICE')

View File

@ -0,0 +1,3 @@
numpy
pandas
pickle

View File

@ -0,0 +1,34 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# bash run_multinpu_train.sh
execute_path=$(pwd)
script_self=$(readlink -f "$0")
self_path=$(dirname "${script_self}")
export RANK_SIZE=$1
export EPOCH_SIZE=$2
export DATASET=$3
export RANK_TABLE_FILE=$4
for((i=0;i<$RANK_SIZE;i++));
do
rm -rf ${execute_path}/device_$i/
mkdir ${execute_path}/device_$i/
cd ${execute_path}/device_$i/ || exit
export RANK_ID=$i
export DEVICE_ID=$i
python -s ${self_path}/../train_and_eval_distribute.py --data_path=$DATASET --epochs=$EPOCH_SIZE >train_deep$i.log 2>&1 &
done

View File

@ -0,0 +1,96 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
callbacks
"""
import time
from mindspore.train.callback import Callback
def add_write(file_path, out_str):
with open(file_path, 'a+', encoding="utf-8") as file_out:
file_out.write(out_str + "\n")
class LossCallBack(Callback):
"""
Monitor the loss in training.
If the loss is NAN or INF terminating training.
Note:
If per_print_times is 0 do not print loss.
Args:
per_print_times (int): Print loss every times. Default: 1.
"""
def __init__(self, config, per_print_times=1):
super(LossCallBack, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self._per_print_times = per_print_times
self.config = config
def step_end(self, run_context):
"""Monitor the loss in training."""
cb_params = run_context.original_args()
wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), \
cb_params.net_outputs[1].asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
cur_num = cb_params.cur_step_num
print("===loss===", cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss, flush=True)
if self._per_print_times != 0 and cur_num % self._per_print_times == 0:
loss_file = open(self.config.loss_file_name, "a+")
loss_file.write(
"epoch: %s step: %s, wide_loss is %s, deep_loss is %s" %
(cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss,
deep_loss))
loss_file.write("\n")
loss_file.close()
print("epoch: %s step: %s, wide_loss is %s, deep_loss is %s" % (
cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss,
deep_loss))
class EvalCallBack(Callback):
"""
Monitor the loss in training.
If the loss is NAN or INF terminating training.
Note:
If per_print_times is 0 do not print loss.
Args:
per_print_times (int): Print loss every times. Default: 1.
"""
def __init__(self, model, eval_dataset, auc_metric, config, print_per_step=1):
super(EvalCallBack, self).__init__()
if not isinstance(print_per_step, int) or print_per_step < 0:
raise ValueError("print_step must be int and >= 0.")
self.print_per_step = print_per_step
self.model = model
self.eval_dataset = eval_dataset
self.aucMetric = auc_metric
self.aucMetric.clear()
self.eval_file_name = config.eval_file_name
def epoch_end(self, run_context):
"""Monitor the auc in training."""
self.aucMetric.clear()
start_time = time.time()
out = self.model.eval(self.eval_dataset)
end_time = time.time()
eval_time = int(end_time - start_time)
time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
out_str = "{}=====EvalCallBack model.eval(): {} ; eval_time:{}s".format(time_str, out.values(), eval_time)
print(out_str)
add_write(self.eval_file_name, out_str)

View File

@ -0,0 +1,95 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" config. """
import argparse
def argparse_init():
"""
argparse_init
"""
parser = argparse.ArgumentParser(description='WideDeep')
parser.add_argument("--data_path", type=str, default="./test_raw_data/") # The location of the input data.
parser.add_argument("--epochs", type=int, default=200) # The number of epochs used to train.
parser.add_argument("--batch_size", type=int, default=131072) # Batch size for training and evaluation
parser.add_argument("--eval_batch_size", type=int, default=131072) # The batch size used for evaluation.
parser.add_argument("--deep_layers_dim", type=int, nargs='+', default=[1024, 512, 256, 128]) # The sizes of hidden layers for MLP
parser.add_argument("--deep_layers_act", type=str, default='relu') # The act of hidden layers for MLP
parser.add_argument("--keep_prob", type=float, default=1.0) # The Embedding size of MF model.
parser.add_argument("--adam_lr", type=float, default=0.003) # The Adam lr
parser.add_argument("--ftrl_lr", type=float, default=0.1) # The ftrl lr.
parser.add_argument("--l2_coef", type=float, default=0.0) # The l2 coefficient.
parser.add_argument("--is_tf_dataset", type=bool, default=True) # The l2 coefficient.
parser.add_argument("--output_path", type=str, default="./output/") # The location of the output file.
parser.add_argument("--ckpt_path", type=str, default="./checkpoints/") # The location of the checkpoints file.
parser.add_argument("--eval_file_name", type=str, default="eval.log") # Eval output file.
parser.add_argument("--loss_file_name", type=str, default="loss.log") # Loss output file.
return parser
class WideDeepConfig():
"""
WideDeepConfig
"""
def __init__(self):
self.data_path = ''
self.epochs = 200
self.batch_size = 131072
self.eval_batch_size = 131072
self.deep_layers_act = 'relu'
self.weight_bias_init = ['normal', 'normal']
self.emb_init = 'normal'
self.init_args = [-0.01, 0.01]
self.dropout_flag = False
self.keep_prob = 1.0
self.l2_coef = 0.0
self.adam_lr = 0.003
self.ftrl_lr = 0.1
self.is_tf_dataset = True
self.input_emb_dim = 0
self.output_path = "./output/"
self.eval_file_name = "eval.log"
self.loss_file_name = "loss.log"
self.ckpt_path = "./checkpoints/"
def argparse_init(self):
"""
argparse_init
"""
parser = argparse_init()
args, _ = parser.parse_known_args()
self.data_path = args.data_path
self.epochs = args.epochs
self.batch_size = args.batch_size
self.eval_batch_size = args.eval_batch_size
self.deep_layers_act = args.deep_layers_act
self.keep_prob = args.keep_prob
self.weight_bias_init = ['normal', 'normal']
self.emb_init = 'normal'
self.init_args = [-0.01, 0.01]
self.dropout_flag = False
self.l2_coef = args.l2_coef
self.ftrl_lr = args.ftrl_lr
self.adam_lr = args.adam_lr
self.is_tf_dataset = args.is_tf_dataset
self.output_path = args.output_path
self.eval_file_name = args.eval_file_name
self.loss_file_name = args.loss_file_name
self.ckpt_path = args.ckpt_path

View File

@ -0,0 +1,341 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_dataset."""
import os
import math
import pickle
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.common.dtype as mstype
class H5Dataset():
"""
H5Dataset
"""
input_length = 39
def __init__(self,
data_path,
train_mode=True,
train_num_of_parts=21,
test_num_of_parts=3):
self._hdf_data_dir = data_path
self._is_training = train_mode
if self._is_training:
self._file_prefix = 'train'
self._num_of_parts = train_num_of_parts
else:
self._file_prefix = 'test'
self._num_of_parts = test_num_of_parts
self.data_size = self._bin_count(self._hdf_data_dir, self._file_prefix,
self._num_of_parts)
print("data_size: {}".format(self.data_size))
def _bin_count(self, hdf_data_dir, file_prefix, num_of_parts):
size = 0
for part in range(num_of_parts):
_y = pd.read_hdf(
os.path.join(hdf_data_dir, file_prefix + '_output_part_' +
str(part) + '.h5'))
size += _y.shape[0]
return size
def _iterate_hdf_files_(self, num_of_parts=None, shuffle_block=False):
"""
iterate among hdf files(blocks). when the whole data set is finished, the iterator restarts
from the beginning, thus the data stream will never stop
:param train_mode: True or false,false is eval_mode,
this file iterator will go through the train set
:param num_of_parts: number of files
:param shuffle_block: shuffle block files at every round
:return: input_hdf_file_name, output_hdf_file_name, finish_flag
"""
parts = np.arange(num_of_parts)
while True:
if shuffle_block:
for _ in range(int(shuffle_block)):
np.random.shuffle(parts)
for i, p in enumerate(parts):
yield os.path.join(self._hdf_data_dir,
self._file_prefix + '_input_part_' + str(
p) + '.h5'), \
os.path.join(self._hdf_data_dir,
self._file_prefix + '_output_part_' + str(
p) + '.h5'), i + 1 == len(parts)
def _generator(self, X, y, batch_size, shuffle=True):
"""
should be accessed only in private
:param X:
:param y:
:param batch_size:
:param shuffle:
:return:
"""
number_of_batches = np.ceil(1. * X.shape[0] / batch_size)
counter = 0
finished = False
sample_index = np.arange(X.shape[0])
if shuffle:
for _ in range(int(shuffle)):
np.random.shuffle(sample_index)
assert X.shape[0] > 0
while True:
batch_index = sample_index[batch_size * counter:batch_size *
(counter + 1)]
X_batch = X[batch_index]
y_batch = y[batch_index]
counter += 1
yield X_batch, y_batch, finished
if counter == number_of_batches:
counter = 0
finished = True
def batch_generator(self,
batch_size=1000,
random_sample=False,
shuffle_block=False):
"""
:param train_mode: True or false,false is eval_mode,
:param batch_size
:param num_of_parts: number of files
:param random_sample: if True, will shuffle
:param shuffle_block: shuffle file blocks at every round
:return:
"""
for hdf_in, hdf_out, _ in self._iterate_hdf_files_(
self._num_of_parts, shuffle_block):
start = stop = None
X_all = pd.read_hdf(hdf_in, start=start, stop=stop).values
y_all = pd.read_hdf(hdf_out, start=start, stop=stop).values
data_gen = self._generator(X_all,
y_all,
batch_size,
shuffle=random_sample)
finished = False
while not finished:
X, y, finished = data_gen.__next__()
X_id = X[:, 0:self.input_length]
X_va = X[:, self.input_length:]
yield np.array(X_id.astype(dtype=np.int32)), np.array(
X_va.astype(dtype=np.float32)), np.array(
y.astype(dtype=np.float32))
def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000):
"""
_get_h5_dataset
"""
data_para = {
'batch_size': batch_size,
}
if train_mode:
data_para['random_sample'] = True
data_para['shuffle_block'] = True
h5_dataset = H5Dataset(data_path=data_dir, train_mode=train_mode)
numbers_of_batch = math.ceil(h5_dataset.data_size / batch_size)
def _iter_h5_data():
train_eval_gen = h5_dataset.batch_generator(**data_para)
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data(),
["ids", "weights", "labels"])
ds.set_dataset_size(numbers_of_batch)
ds = ds.repeat(epochs)
return ds
def _get_tf_dataset(data_dir,
schema_dict,
input_shape_dict,
train_mode=True,
epochs=1,
batch_size=4096,
line_per_sample=4096,
rank_size=None,
rank_id=None):
"""
_get_tf_dataset
"""
dataset_files = []
file_prefix_name = 'train' if train_mode else 'eval'
shuffle = bool(train_mode)
for (dirpath, _, filenames) in os.walk(data_dir):
for filename in filenames:
if file_prefix_name in filename and "tfrecord" in filename:
dataset_files.append(os.path.join(dirpath, filename))
schema = de.Schema()
float_key_list = ["label", "continue_val"]
columns_list = []
for key, attr_dict in schema_dict.items():
print("key: {}; shape: {}".format(key, attr_dict["tf_shape"]))
columns_list.append(key)
if key in set(float_key_list):
ms_dtype = mstype.float32
else:
ms_dtype = mstype.int32
schema.add_column(key, de_type=ms_dtype)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8,
num_shards=rank_size,
shard_id=rank_id,
shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
operations_list = []
for key in columns_list:
operations_list.append(lambda x: np.array(x).flatten().reshape(input_shape_dict[key]))
print("ssssssssssssssssssssss---------------------" * 10)
print(input_shape_dict)
print("---------------------" * 10)
print(schema_dict)
def mixup(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u):
a = np.asarray(a.reshape(batch_size,))
b = np.array(b).flatten().reshape(batch_size, -1)
c = np.array(c).flatten().reshape(batch_size, -1)
d = np.array(d).flatten().reshape(batch_size, -1)
e = np.array(e).flatten().reshape(batch_size, -1)
f = np.array(f).flatten().reshape(batch_size, -1)
g = np.array(g).flatten().reshape(batch_size, -1)
h = np.array(h).flatten().reshape(batch_size, -1)
i = np.array(i).flatten().reshape(batch_size, -1)
j = np.array(j).flatten().reshape(batch_size, -1)
k = np.array(k).flatten().reshape(batch_size, -1)
l = np.array(l).flatten().reshape(batch_size, -1)
m = np.array(m).flatten().reshape(batch_size, -1)
n = np.array(n).flatten().reshape(batch_size, -1)
o = np.array(o).flatten().reshape(batch_size, -1)
p = np.array(p).flatten().reshape(batch_size, -1)
q = np.array(q).flatten().reshape(batch_size, -1)
r = np.array(r).flatten().reshape(batch_size, -1)
s = np.array(s).flatten().reshape(batch_size, -1)
t = np.array(t).flatten().reshape(batch_size, -1)
u = np.array(u).flatten().reshape(batch_size, -1)
return a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
ds = ds.map(
operations=mixup,
input_columns=[
'label', 'continue_val', 'indicator_id', 'emb_128_id',
'emb_64_single_id', 'multi_doc_ad_category_id',
'multi_doc_ad_category_id_mask', 'multi_doc_event_entity_id',
'multi_doc_event_entity_id_mask', 'multi_doc_ad_entity_id',
'multi_doc_ad_entity_id_mask', 'multi_doc_event_topic_id',
'multi_doc_event_topic_id_mask', 'multi_doc_event_category_id',
'multi_doc_event_category_id_mask', 'multi_doc_ad_topic_id',
'multi_doc_ad_topic_id_mask', 'ad_id', 'display_ad_and_is_leak',
'display_id', 'is_leak'
],
columns_order=[
'label', 'continue_val', 'indicator_id', 'emb_128_id',
'emb_64_single_id', 'multi_doc_ad_category_id',
'multi_doc_ad_category_id_mask', 'multi_doc_event_entity_id',
'multi_doc_event_entity_id_mask', 'multi_doc_ad_entity_id',
'multi_doc_ad_entity_id_mask', 'multi_doc_event_topic_id',
'multi_doc_event_topic_id_mask', 'multi_doc_event_category_id',
'multi_doc_event_category_id_mask', 'multi_doc_ad_topic_id',
'multi_doc_ad_topic_id_mask', 'display_id', 'ad_id',
'display_ad_and_is_leak', 'is_leak'
],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
def compute_emb_dim(config):
"""
compute_emb_dim
"""
with open(
os.path.join(config.data_path + 'dataformat/',
"input_shape_dict.pkl"), "rb") as file_in:
input_shape_dict = pickle.load(file_in)
input_field_size = {}
for key, shape in input_shape_dict.items():
if len(shape) < 2:
input_field_size[key] = 1
else:
input_field_size[key] = shape[1]
multi_key_list = [
"multi_doc_event_topic_id", "multi_doc_event_entity_id",
"multi_doc_ad_category_id", "multi_doc_event_category_id",
"multi_doc_ad_entity_id", "multi_doc_ad_topic_id"
]
config.input_emb_dim = input_field_size["continue_val"] + \
input_field_size["indicator_id"] * 64 + \
input_field_size["emb_128_id"] * 128 + \
input_field_size["emb_64_single_id"] * 64 + \
len(multi_key_list) * 64
def create_dataset(data_dir,
train_mode=True,
epochs=1,
batch_size=4096,
is_tf_dataset=True,
line_per_sample=4096,
rank_size=None,
rank_id=None):
"""
create_dataset
"""
if is_tf_dataset:
with open(os.path.join(data_dir + 'dataformat/', "schema_dict.pkl"),
"rb") as file_in:
print(os.path.join(data_dir + 'dataformat/', "schema_dict.pkl"))
schema_dict = pickle.load(file_in)
with open(
os.path.join(data_dir + 'dataformat/', "input_shape_dict.pkl"),
"rb") as file_in:
input_shape_dict = pickle.load(file_in)
return _get_tf_dataset(data_dir,
schema_dict,
input_shape_dict,
train_mode,
epochs,
batch_size,
line_per_sample,
rank_size=rank_size,
rank_id=rank_id)
if rank_size is not None and rank_size > 1:
raise RuntimeError("please use tfrecord dataset.")
return _get_h5_dataset(data_dir, train_mode, epochs, batch_size)

View File

@ -0,0 +1,153 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Area under cure metric
"""
import time
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score, average_precision_score
from mindspore.nn.metrics import Metric
def groupby_df_v1(test_df, gb_key):
"""
groupby_df_v1
"""
data_groups = test_df.groupby(gb_key)
return data_groups
def _compute_metric_v1(batch_groups, topk):
"""
_compute_metric_v1
"""
results = []
for df in batch_groups:
df = df.sort_values(by="preds", ascending=False)
if df.shape[0] > topk:
df = df.head(topk)
preds = df["preds"].values
labels = df["labels"].values
if np.sum(labels) > 0:
results.append(average_precision_score(labels, preds))
else:
results.append(0.0)
return results
def mean_AP_topk(batch_labels, batch_preds, topk=12):
"""
mean_AP_topk
"""
def ap_score(label, y_preds, topk):
ind_list = np.argsort(y_preds)[::-1]
ind_list = ind_list[:topk]
if label not in set(ind_list):
return 0.0
rank = list(ind_list).index(label)
return 1.0 / (rank + 1)
mAP_list = []
for label, preds in zip(batch_labels, batch_preds):
mAP = ap_score(label, preds, topk)
mAP_list.append(mAP)
return mAP_list
def new_compute_mAP(test_df, gb_key="display_ids", top_k=12):
"""
new_compute_mAP
"""
total_start = time.time()
display_ids = test_df["display_ids"]
labels = test_df["labels"]
predictions = test_df["preds"]
test_df.sort_values(by=[gb_key], inplace=True, ascending=True)
display_ids = test_df["display_ids"]
labels = test_df["labels"]
predictions = test_df["preds"]
_, display_ids_idx = np.unique(display_ids, return_index=True)
preds = np.split(predictions.tolist(), display_ids_idx.tolist()[1:])
labels = np.split(labels.tolist(), display_ids_idx.tolist()[1:])
def pad_fn(ele_l):
res_list = ele_l + [0.0 for i in range(30 - len(ele_l))]
return res_list
preds = list(map(lambda x: pad_fn(x.tolist()), preds))
labels = [np.argmax(l) for l in labels]
result_list = []
batch_size = 100000
for idx in range(0, len(labels), batch_size):
batch_labels = labels[idx:idx + batch_size]
batch_preds = preds[idx:idx + batch_size]
meanAP = mean_AP_topk(batch_labels, batch_preds, topk=top_k)
result_list.extend(meanAP)
mean_AP = np.mean(result_list)
print("compute time: {}".format(time.time() - total_start))
print("mean_AP: {}".format(mean_AP))
return mean_AP
class AUCMetric(Metric):
"""
AUCMetric
"""
def __init__(self):
super(AUCMetric, self).__init__()
self.index = 1
def clear(self):
"""Clear the internal evaluation result."""
self.true_labels = []
self.pred_probs = []
self.display_id = []
def update(self, *inputs):
"""
update
"""
all_predict = inputs[1].asnumpy() # predict
all_label = inputs[2].asnumpy() # label
all_display_id = inputs[3].asnumpy() # label
self.true_labels.extend(all_label.flatten().tolist())
self.pred_probs.extend(all_predict.flatten().tolist())
self.display_id.extend(all_display_id.flatten().tolist())
def eval(self):
"""
eval
"""
if len(self.true_labels) != len(self.pred_probs):
raise RuntimeError(
'true_labels.size() is not equal to pred_probs.size()')
result_df = pd.DataFrame({
"display_ids": self.display_id,
"preds": self.pred_probs,
"labels": self.true_labels,
})
auc = roc_auc_score(self.true_labels, self.pred_probs)
MAP = new_compute_mAP(result_df, gb_key="display_ids", top_k=12)
print("=====" * 20 + " auc_metric end ")
print("=====" * 20 + " auc: {}, map: {}".format(auc, MAP))
return auc

View File

@ -0,0 +1,638 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""wide and deep model"""
import numpy as np
import mindspore.common.dtype as mstype
from mindspore import nn
from mindspore import Tensor, Parameter, ParameterTuple
from mindspore.ops import functional as F
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.nn import Dropout, Flatten
from mindspore.nn.optim import Adam, FTRL
from mindspore.common.initializer import Uniform, initializer
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
from mindspore.train.parallel_utils import ParallelMode
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
np_type = np.float32
ms_type = mstype.float32
def init_method(method, shape, name, max_val=1.0):
"""
Init method
"""
if method in ['uniform']:
params = Parameter(initializer(Uniform(max_val), shape, ms_type),
name=name)
elif method == "one":
params = Parameter(initializer("ones", shape, ms_type), name=name)
elif method == 'zero':
params = Parameter(initializer("zeros", shape, ms_type), name=name)
elif method == "normal":
params = Parameter(Tensor(
np.random.normal(loc=0.0, scale=0.01,
size=shape).astype(dtype=np_type)),
name=name)
return params
def init_var_dict(init_args, in_vars):
"""
Init parameters by dict
"""
var_map = {}
_, _max_val = init_args
for _, iterm in enumerate(in_vars):
key, shape, method = iterm
if key not in var_map.keys():
if method in ['random', 'uniform']:
var_map[key] = Parameter(initializer(Uniform(_max_val), shape,
ms_type),
name=key)
elif method == "one":
var_map[key] = Parameter(initializer("ones", shape, ms_type),
name=key)
elif method == "zero":
var_map[key] = Parameter(initializer("zeros", shape, ms_type),
name=key)
elif method == 'normal':
var_map[key] = Parameter(Tensor(
np.random.normal(loc=0.0, scale=0.01,
size=shape).astype(dtype=np_type)),
name=key)
return var_map
class DenseLayer(nn.Cell):
"""
Dense Layer for Deep Layer of WideDeep Model;
Containing: activation, matmul, bias_add;
"""
def __init__(self,
input_dim,
output_dim,
weight_bias_init,
act_str,
keep_prob=0.7,
scale_coef=1.0,
convert_dtype=True):
super(DenseLayer, self).__init__()
weight_init, bias_init = weight_bias_init
self.weight = init_method(weight_init, [input_dim, output_dim],
name="weight")
self.bias = init_method(bias_init, [output_dim], name="bias")
self.act_func = self._init_activation(act_str)
self.matmul = P.MatMul(transpose_b=False)
self.bias_add = P.BiasAdd()
self.cast = P.Cast()
self.dropout = Dropout(keep_prob=0.8)
self.mul = P.Mul()
self.realDiv = P.RealDiv()
self.scale_coef = scale_coef
self.convert_dtype = convert_dtype
def _init_activation(self, act_str):
act_str = act_str.lower()
if act_str == "relu":
act_func = P.ReLU()
elif act_str == "sigmoid":
act_func = P.Sigmoid()
elif act_str == "tanh":
act_func = P.Tanh()
return act_func
def construct(self, x):
"""
DenseLayer construct
"""
x = self.act_func(x)
if self.training:
x = self.dropout(x)
x = self.mul(x, self.scale_coef)
if self.convert_dtype:
x = self.cast(x, mstype.float16)
weight = self.cast(self.weight, mstype.float16)
wx = self.matmul(x, weight)
wx = self.cast(wx, mstype.float32)
else:
wx = self.matmul(x, self.weight)
wx = self.realDiv(wx, self.scale_coef)
output = self.bias_add(wx, self.bias)
return output
class WideDeepModel(nn.Cell):
"""
From paper: " Wide & Deep Learning for Recommender Systems"
Args:
config (Class): The default config of Wide&Deep
"""
def __init__(self, config):
super(WideDeepModel, self).__init__()
emb_128_size = 650000
emb64_single_size = 17300
emb64_multi_size = 20900
indicator_size = 16
deep_dim_list = [1024, 1024, 1024, 1024, 1024]
# deep_dropout=0.0
wide_reg_coef = [0.0, 0.0]
deep_reg_coef = [0.0, 0.0]
wide_lr = 0.2
deep_lr = 1.0
self.input_emb_dim = config.input_emb_dim
self.batch_size = config.batch_size
self.deep_layer_act = config.deep_layers_act
self.init_args = config.init_args
self.weight_init, self.bias_init = config.weight_bias_init
self.weight_bias_init = config.weight_bias_init
self.emb_init = config.emb_init
self.keep_prob = config.keep_prob
self.layer_dims = deep_dim_list + [1]
self.all_dim_list = [self.input_emb_dim] + self.layer_dims
self.continue_field_size = 32
self.emb_128_size = emb_128_size
self.emb64_single_size = emb64_single_size
self.emb64_multi_size = emb64_multi_size
self.indicator_size = indicator_size
self.wide_l1_coef, self.wide_l2_coef = wide_reg_coef
self.deep_l1_coef, self.deep_l2_coef = deep_reg_coef
self.wide_lr = wide_lr
self.deep_lr = deep_lr
init_acts_embedding_metrix = [
('emb128_embedding', [self.emb_128_size, 128], self.emb_init),
('emb64_single', [self.emb64_single_size, 64], self.emb_init),
('emb64_multi', [self.emb64_multi_size, 64], self.emb_init),
('emb64_indicator', [self.indicator_size, 64], self.emb_init)
]
var_map = init_var_dict(self.init_args, init_acts_embedding_metrix)
self.emb128_embedding = var_map["emb128_embedding"]
self.emb64_single = var_map["emb64_single"]
self.emb64_multi = var_map["emb64_multi"]
self.emb64_indicator = var_map["emb64_indicator"]
init_acts_wide_weight = [
('wide_continue_w', [self.continue_field_size], self.emb_init),
('wide_emb128_w', [self.emb_128_size], self.emb_init),
('wide_emb64_single_w', [self.emb64_single_size], self.emb_init),
('wide_emb64_multi_w', [self.emb64_multi_size], self.emb_init),
('wide_indicator_w', [self.indicator_size], self.emb_init),
('wide_bias', [1], self.emb_init)
]
var_map = init_var_dict(self.init_args, init_acts_wide_weight)
self.wide_continue_w = var_map["wide_continue_w"]
self.wide_emb128_w = var_map["wide_emb128_w"]
self.wide_emb64_single_w = var_map["wide_emb64_single_w"]
self.wide_emb64_multi_w = var_map["wide_emb64_multi_w"]
self.wide_indicator_w = var_map["wide_indicator_w"]
self.wide_bias = var_map["wide_bias"]
self.dense_layer_1 = DenseLayer(self.all_dim_list[0],
self.all_dim_list[1],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.dense_layer_2 = DenseLayer(self.all_dim_list[1],
self.all_dim_list[2],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.dense_layer_3 = DenseLayer(self.all_dim_list[2],
self.all_dim_list[3],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.dense_layer_4 = DenseLayer(self.all_dim_list[3],
self.all_dim_list[4],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.dense_layer_5 = DenseLayer(self.all_dim_list[4],
self.all_dim_list[5],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.deep_predict = DenseLayer(self.all_dim_list[5],
self.all_dim_list[6],
self.weight_bias_init,
self.deep_layer_act,
convert_dtype=True)
self.gather_v2 = P.GatherV2()
self.mul = P.Mul()
self.reduce_sum_false = P.ReduceSum(keep_dims=False)
self.reduce_sum_true = P.ReduceSum(keep_dims=True)
self.reshape = P.Reshape()
self.square = P.Square()
self.shape = P.Shape()
self.tile = P.Tile()
self.concat = P.Concat(axis=1)
self.cast = P.Cast()
self.reduceMean_false = P.ReduceMean(keep_dims=False)
self.Concat = P.Concat(axis=1)
self.BiasAdd = P.BiasAdd()
self.expand_dims = P.ExpandDims()
self.flatten = Flatten()
def construct(self, continue_val, indicator_id, emb_128_id,
emb_64_single_id, multi_doc_ad_category_id,
multi_doc_ad_category_id_mask, multi_doc_event_entity_id,
multi_doc_event_entity_id_mask, multi_doc_ad_entity_id,
multi_doc_ad_entity_id_mask, multi_doc_event_topic_id,
multi_doc_event_topic_id_mask, multi_doc_event_category_id,
multi_doc_event_category_id_mask, multi_doc_ad_topic_id,
multi_doc_ad_topic_id_mask, display_id, ad_id,
display_ad_and_is_leak, is_leak):
"""
Args:
id_hldr: batch ids;
wt_hldr: batch weights;
"""
val_hldr = continue_val
ind_hldr = indicator_id
emb128_id_hldr = emb_128_id
emb64_single_hldr = emb_64_single_id
ind_emb = self.gather_v2(self.emb64_indicator, ind_hldr, 0)
ind_emb = self.flatten(ind_emb)
emb128_id_emb = self.gather_v2(self.emb128_embedding, emb128_id_hldr,
0)
emb128_id_emb = self.flatten(emb128_id_emb)
emb64_sgl_emb = self.gather_v2(self.emb64_single, emb64_single_hldr, 0)
emb64_sgl_emb = self.flatten(emb64_sgl_emb)
mult_emb_1 = self.gather_v2(self.emb64_multi, multi_doc_ad_category_id,
0)
mult_emb_1 = self.mul(
self.cast(mult_emb_1, mstype.float32),
self.cast(self.expand_dims(multi_doc_ad_category_id_mask, 2),
mstype.float32))
mult_emb_1 = self.reduceMean_false(mult_emb_1, 1)
mult_emb_2 = self.gather_v2(self.emb64_multi,
multi_doc_event_entity_id, 0)
mult_emb_2 = self.mul(
self.cast(mult_emb_2, mstype.float32),
self.cast(self.expand_dims(multi_doc_event_entity_id_mask, 2),
mstype.float32))
mult_emb_2 = self.reduceMean_false(mult_emb_2, 1)
mult_emb_3 = self.gather_v2(self.emb64_multi, multi_doc_ad_entity_id,
0)
mult_emb_3 = self.mul(
self.cast(mult_emb_3, mstype.float32),
self.cast(self.expand_dims(multi_doc_ad_entity_id_mask, 2),
mstype.float32))
mult_emb_3 = self.reduceMean_false(mult_emb_3, 1)
mult_emb_4 = self.gather_v2(self.emb64_multi, multi_doc_event_topic_id,
0)
mult_emb_4 = self.mul(
self.cast(mult_emb_4, mstype.float32),
self.cast(self.expand_dims(multi_doc_event_topic_id_mask, 2),
mstype.float32))
mult_emb_4 = self.reduceMean_false(mult_emb_4, 1)
mult_emb_5 = self.gather_v2(self.emb64_multi,
multi_doc_event_category_id, 0)
mult_emb_5 = self.mul(
self.cast(mult_emb_5, mstype.float32),
self.cast(self.expand_dims(multi_doc_event_category_id_mask, 2),
mstype.float32))
mult_emb_5 = self.reduceMean_false(mult_emb_5, 1)
mult_emb_6 = self.gather_v2(self.emb64_multi, multi_doc_ad_topic_id, 0)
mult_emb_6 = self.mul(
self.cast(mult_emb_6, mstype.float32),
self.cast(self.expand_dims(multi_doc_ad_topic_id_mask, 2),
mstype.float32))
mult_emb_6 = self.reduceMean_false(mult_emb_6, 1)
mult_embedding = self.Concat((mult_emb_1, mult_emb_2, mult_emb_3,
mult_emb_4, mult_emb_5, mult_emb_6))
input_embedding = self.Concat((val_hldr * 1, ind_emb, emb128_id_emb,
emb64_sgl_emb, mult_embedding))
deep_out = self.dense_layer_1(input_embedding)
deep_out = self.dense_layer_2(deep_out)
deep_out = self.dense_layer_3(deep_out)
deep_out = self.dense_layer_4(deep_out)
deep_out = self.dense_layer_5(deep_out)
deep_out = self.deep_predict(deep_out)
val_weight = self.mul(val_hldr,
self.expand_dims(self.wide_continue_w, 0))
val_w_sum = self.reduce_sum_true(val_weight, 1)
ind_weight = self.gather_v2(self.wide_indicator_w, ind_hldr, 0)
ind_w_sum = self.reduce_sum_true(ind_weight, 1)
emb128_id_weight = self.gather_v2(self.wide_emb128_w, emb128_id_hldr,
0)
emb128_w_sum = self.reduce_sum_true(emb128_id_weight, 1)
emb64_sgl_weight = self.gather_v2(self.wide_emb64_single_w,
emb64_single_hldr, 0)
emb64_w_sum = self.reduce_sum_true(emb64_sgl_weight, 1)
mult_weight_1 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_ad_category_id, 0)
mult_weight_1 = self.mul(
self.cast(mult_weight_1, mstype.float32),
self.cast(multi_doc_ad_category_id_mask, mstype.float32))
mult_weight_1 = self.reduce_sum_true(mult_weight_1, 1)
mult_weight_2 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_event_entity_id, 0)
mult_weight_2 = self.mul(
self.cast(mult_weight_2, mstype.float32),
self.cast(multi_doc_event_entity_id_mask, mstype.float32))
mult_weight_2 = self.reduce_sum_true(mult_weight_2, 1)
mult_weight_3 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_ad_entity_id, 0)
mult_weight_3 = self.mul(
self.cast(mult_weight_3, mstype.float32),
self.cast(multi_doc_ad_entity_id_mask, mstype.float32))
mult_weight_3 = self.reduce_sum_true(mult_weight_3, 1)
mult_weight_4 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_event_topic_id, 0)
mult_weight_4 = self.mul(
self.cast(mult_weight_4, mstype.float32),
self.cast(multi_doc_event_topic_id_mask, mstype.float32))
mult_weight_4 = self.reduce_sum_true(mult_weight_4, 1)
mult_weight_5 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_event_category_id, 0)
mult_weight_5 = self.mul(
self.cast(mult_weight_5, mstype.float32),
self.cast(multi_doc_event_category_id_mask, mstype.float32))
mult_weight_5 = self.reduce_sum_true(mult_weight_5, 1)
mult_weight_6 = self.gather_v2(self.wide_emb64_multi_w,
multi_doc_ad_topic_id, 0)
mult_weight_6 = self.mul(
self.cast(mult_weight_6, mstype.float32),
self.cast(multi_doc_ad_topic_id_mask, mstype.float32))
mult_weight_6 = self.reduce_sum_true(mult_weight_6, 1)
mult_weight_sum = mult_weight_1 + mult_weight_2 + mult_weight_3 + mult_weight_4 + mult_weight_5 + mult_weight_6
wide_out = self.BiasAdd(
val_w_sum + ind_w_sum + emb128_w_sum + emb64_w_sum +
mult_weight_sum, self.wide_bias)
out = wide_out + deep_out
return out, self.emb128_embedding, self.emb64_single, self.emb64_multi
class NetWithLossClass(nn.Cell):
""""
Provide WideDeep training loss through network.
Args:
network (Cell): The training network
config (Class): WideDeep config
"""
def __init__(self, network, config):
super(NetWithLossClass, self).__init__(auto_prefix=False)
self.network = network
self.l2_coef = config.l2_coef
self.loss = P.SigmoidCrossEntropyWithLogits()
self.square = P.Square()
self.reduceMean_false = P.ReduceMean(keep_dims=False)
self.reduceSum_false = P.ReduceSum(keep_dims=False)
self.reshape = P.Reshape()
def construct(self, label, continue_val, indicator_id, emb_128_id,
emb_64_single_id, multi_doc_ad_category_id,
multi_doc_ad_category_id_mask, multi_doc_event_entity_id,
multi_doc_event_entity_id_mask, multi_doc_ad_entity_id,
multi_doc_ad_entity_id_mask, multi_doc_event_topic_id,
multi_doc_event_topic_id_mask, multi_doc_event_category_id,
multi_doc_event_category_id_mask, multi_doc_ad_topic_id,
multi_doc_ad_topic_id_mask, display_id, ad_id,
display_ad_and_is_leak, is_leak):
"""
NetWithLossClass construct
"""
# emb128_embedding, emb64_single, emb64_multi
predict, _, _, _ = self.network(
continue_val, indicator_id, emb_128_id, emb_64_single_id,
multi_doc_ad_category_id, multi_doc_ad_category_id_mask,
multi_doc_event_entity_id, multi_doc_event_entity_id_mask,
multi_doc_ad_entity_id, multi_doc_ad_entity_id_mask,
multi_doc_event_topic_id, multi_doc_event_topic_id_mask,
multi_doc_event_category_id, multi_doc_event_category_id_mask,
multi_doc_ad_topic_id, multi_doc_ad_topic_id_mask, display_id,
ad_id, display_ad_and_is_leak, is_leak)
predict = self.reshape(predict, (-1,))
basic_loss = self.loss(predict, label)
wide_loss = self.reduceMean_false(basic_loss)
deep_loss = self.reduceMean_false(basic_loss)
return wide_loss, deep_loss
class IthOutputCell(nn.Cell):
"""
IthOutputCell
"""
def __init__(self, network, output_index):
super(IthOutputCell, self).__init__()
self.network = network
self.output_index = output_index
def construct(self, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13,
x14, x15, x16, x17, x18, x19, x20, x21):
"""
IthOutputCell construct
"""
predict = self.network(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16, x17, x18, x19, x20,
x21)[self.output_index]
return predict
class TrainStepWrap(nn.Cell):
"""
Encapsulation class of WideDeep network training.
Append Adam and FTRL optimizers to the training network after that construct
function can be called to create the backward graph.
Args:
network (Cell): the training network. Note that loss function should have been added.
sens (Number): The adjust parameter. Default: 1000.0
"""
def __init__(self, network, config, sens=1000.0):
super(TrainStepWrap, self).__init__()
self.network = network
self.network.set_train()
self.trainable_params = network.trainable_params()
weights_w = []
weights_d = []
for params in self.trainable_params:
if 'wide' in params.name:
weights_w.append(params)
else:
weights_d.append(params)
self.weights_w = ParameterTuple(weights_w)
self.weights_d = ParameterTuple(weights_d)
self.optimizer_w = FTRL(learning_rate=config.ftrl_lr,
params=self.weights_w,
l1=5e-4,
l2=5e-4,
initial_accum=0.1,
loss_scale=sens)
#self.optimizer_d = ProximalAdagrad(self.weights_d, learning_rate=config.adam_lr,loss_scale=sens)
self.optimizer_d = Adam(self.weights_d,
learning_rate=config.adam_lr,
eps=1e-6,
loss_scale=sens)
self.hyper_map = C.HyperMap()
self.grad_w = C.GradOperation('grad_w',
get_by_list=True,
sens_param=True)
self.grad_d = C.GradOperation('grad_d',
get_by_list=True,
sens_param=True)
self.sens = sens
self.loss_net_w = IthOutputCell(network, output_index=0)
self.loss_net_d = IthOutputCell(network, output_index=1)
self.reducer_flag = False
self.grad_reducer_w = None
self.grad_reducer_d = None
parallel_mode = _get_parallel_mode()
if parallel_mode in (ParallelMode.DATA_PARALLEL,
ParallelMode.HYBRID_PARALLEL):
self.reducer_flag = True
if self.reducer_flag:
mean = _get_mirror_mean()
degree = _get_device_num()
self.grad_reducer_w = DistributedGradReducer(
self.optimizer_w.parameters, mean, degree)
self.grad_reducer_d = DistributedGradReducer(
self.optimizer_d.parameters, mean, degree)
def construct(self, label, continue_val, indicator_id, emb_128_id,
emb_64_single_id, multi_doc_ad_category_id,
multi_doc_ad_category_id_mask, multi_doc_event_entity_id,
multi_doc_event_entity_id_mask, multi_doc_ad_entity_id,
multi_doc_ad_entity_id_mask, multi_doc_event_topic_id,
multi_doc_event_topic_id_mask, multi_doc_event_category_id,
multi_doc_event_category_id_mask, multi_doc_ad_topic_id,
multi_doc_ad_topic_id_mask, display_id, ad_id,
display_ad_and_is_leak, is_leak):
"""
TrainStepWrap construct
"""
weights_w = self.weights_w
weights_d = self.weights_d
loss_w, loss_d = self.network(
label, continue_val, indicator_id, emb_128_id, emb_64_single_id,
multi_doc_ad_category_id, multi_doc_ad_category_id_mask,
multi_doc_event_entity_id, multi_doc_event_entity_id_mask,
multi_doc_ad_entity_id, multi_doc_ad_entity_id_mask,
multi_doc_event_topic_id, multi_doc_event_topic_id_mask,
multi_doc_event_category_id, multi_doc_event_category_id_mask,
multi_doc_ad_topic_id, multi_doc_ad_topic_id_mask, display_id,
ad_id, display_ad_and_is_leak, is_leak)
sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens) #
sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens) #
grads_w = self.grad_w(self.loss_net_w, weights_w)(
label, continue_val, indicator_id, emb_128_id, emb_64_single_id,
multi_doc_ad_category_id, multi_doc_ad_category_id_mask,
multi_doc_event_entity_id, multi_doc_event_entity_id_mask,
multi_doc_ad_entity_id, multi_doc_ad_entity_id_mask,
multi_doc_event_topic_id, multi_doc_event_topic_id_mask,
multi_doc_event_category_id, multi_doc_event_category_id_mask,
multi_doc_ad_topic_id, multi_doc_ad_topic_id_mask, display_id,
ad_id, display_ad_and_is_leak, is_leak, sens_w)
grads_d = self.grad_d(self.loss_net_d, weights_d)(
label, continue_val, indicator_id, emb_128_id, emb_64_single_id,
multi_doc_ad_category_id, multi_doc_ad_category_id_mask,
multi_doc_event_entity_id, multi_doc_event_entity_id_mask,
multi_doc_ad_entity_id, multi_doc_ad_entity_id_mask,
multi_doc_event_topic_id, multi_doc_event_topic_id_mask,
multi_doc_event_category_id, multi_doc_event_category_id_mask,
multi_doc_ad_topic_id, multi_doc_ad_topic_id_mask, display_id,
ad_id, display_ad_and_is_leak, is_leak, sens_d)
if self.reducer_flag:
# apply grad reducer on grads
grads_w = self.grad_reducer_w(grads_w)
grads_d = self.grad_reducer_d(grads_d)
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(
loss_d, self.optimizer_d(grads_d))
class PredictWithSigmoid(nn.Cell):
"""
PredictWithSigomid
"""
def __init__(self, network):
super(PredictWithSigmoid, self).__init__()
self.network = network
self.sigmoid = P.Sigmoid()
self.reshape = P.Reshape()
def construct(self, label, continue_val, indicator_id, emb_128_id,
emb_64_single_id, multi_doc_ad_category_id,
multi_doc_ad_category_id_mask, multi_doc_event_entity_id,
multi_doc_event_entity_id_mask, multi_doc_ad_entity_id,
multi_doc_ad_entity_id_mask, multi_doc_event_topic_id,
multi_doc_event_topic_id_mask, multi_doc_event_category_id,
multi_doc_event_category_id_mask, multi_doc_ad_topic_id,
multi_doc_ad_topic_id_mask, display_id, ad_id,
display_ad_and_is_leak, is_leak):
"""
PredictWithSigomid construct
"""
logits, _, _, _ = self.network(
continue_val, indicator_id, emb_128_id, emb_64_single_id,
multi_doc_ad_category_id, multi_doc_ad_category_id_mask,
multi_doc_event_entity_id, multi_doc_event_entity_id_mask,
multi_doc_ad_entity_id, multi_doc_ad_entity_id_mask,
multi_doc_event_topic_id, multi_doc_event_topic_id_mask,
multi_doc_event_category_id, multi_doc_event_category_id_mask,
multi_doc_ad_topic_id, multi_doc_ad_topic_id_mask, display_id,
ad_id, display_ad_and_is_leak, is_leak)
logits = self.reshape(logits, (-1,))
pred_probs = self.sigmoid(logits)
return logits, pred_probs, label, display_id

View File

@ -0,0 +1,107 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" training_and_evaluating """
import os
import sys
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import TimeMonitor
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
from src.datasets import create_dataset, compute_emb_dim
from src.metrics import AUCMetric
from src.config import WideDeepConfig
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def get_WideDeep_net(config):
"""
Get network of wide&deep model.
"""
WideDeep_net = WideDeepModel(config)
loss_net = NetWithLossClass(WideDeep_net, config)
train_net = TrainStepWrap(loss_net, config)
eval_net = PredictWithSigmoid(WideDeep_net)
return train_net, eval_net
class ModelBuilder():
"""
ModelBuilder.
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_train_hook(self):
hooks = []
callback = LossCallBack()
hooks.append(callback)
if int(os.getenv('DEVICE_ID')) == 0:
pass
return hooks
def get_net(self, config):
return get_WideDeep_net(config)
def train_and_eval(config):
"""
train_and_eval.
"""
data_path = config.data_path
epochs = config.epochs
print("epochs is {}".format(epochs))
ds_train = create_dataset(data_path, train_mode=True, epochs=1,
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset)
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset)
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
net_builder = ModelBuilder()
train_net, eval_net = net_builder.get_net(config)
train_net.set_train()
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
callback = LossCallBack(config)
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
directory=config.ckpt_path, config=ckptconfig)
model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback,
callback, ckpoint_cb])
if __name__ == "__main__":
wide_and_deep_config = WideDeepConfig()
wide_and_deep_config.argparse_init()
compute_emb_dim(wide_and_deep_config)
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci",
save_graphs=True)
train_and_eval(wide_and_deep_config)

View File

@ -0,0 +1,113 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" training_multinpu"""
import os
import sys
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import TimeMonitor
from mindspore.train import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
from src.datasets import create_dataset, compute_emb_dim
from src.metrics import AUCMetric
from src.config import WideDeepConfig
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def get_WideDeep_net(config):
"""
get_WideDeep_net
"""
WideDeep_net = WideDeepModel(config)
loss_net = NetWithLossClass(WideDeep_net, config)
train_net = TrainStepWrap(loss_net, config)
eval_net = PredictWithSigmoid(WideDeep_net)
return train_net, eval_net
class ModelBuilder():
"""
ModelBuilder
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_train_hook(self):
hooks = []
callback = LossCallBack()
hooks.append(callback)
if int(os.getenv('DEVICE_ID')) == 0:
pass
return hooks
def get_net(self, config):
return get_WideDeep_net(config)
def train_and_eval(config):
"""
train_and_eval
"""
data_path = config.data_path
epochs = config.epochs
print("epochs is {}".format(epochs))
ds_train = create_dataset(data_path, train_mode=True, epochs=1,
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset,
rank_id=get_rank(), rank_size=get_group_size())
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,
batch_size=config.batch_size, is_tf_dataset=config.is_tf_dataset,
rank_id=get_rank(), rank_size=get_group_size())
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
net_builder = ModelBuilder()
train_net, eval_net = net_builder.get_net(config)
train_net.set_train()
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
callback = LossCallBack(config)
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
keep_checkpoint_max=10)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
directory=config.ckpt_path, config=ckptconfig)
model.train(epochs, ds_train, callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback,
callback, ckpoint_cb])
if __name__ == "__main__":
wide_and_deep_config = WideDeepConfig()
wide_and_deep_config.argparse_init()
compute_emb_dim(wide_and_deep_config)
context.set_context(mode=context.GRAPH_MODE, device_target="Davinci",
save_graphs=True)
init()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
device_num=get_group_size())
train_and_eval(wide_and_deep_config)