forked from mindspore-Ecosystem/mindspore
!2967 Optimize ControlDepend for heterogeneous_execution
Merge pull request !2967 from huanghui/heterogeneous-backend-control-depend-optimize
This commit is contained in:
commit
240c8c0664
|
@ -451,10 +451,14 @@ CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, bool valid_input, K
|
|||
}
|
||||
auto origin_inputs = cnode->inputs();
|
||||
bool optimize_depend = false;
|
||||
bool optimize_control_depend = false;
|
||||
if (IsPrimitiveCNode(cnode, prim::kPrimDepend) && origin_inputs.size() == 3 &&
|
||||
origin_inputs[kRealInputIndexInDepend]->isa<ValueNode>()) {
|
||||
optimize_depend = true;
|
||||
}
|
||||
if (IsPrimitiveCNode(cnode, prim::kPrimControlDepend) && origin_inputs.size() == 3) {
|
||||
optimize_control_depend = true;
|
||||
}
|
||||
// if has multiple depends,only select first depend as parameter
|
||||
for (size_t input_idx = 1; input_idx < origin_inputs.size(); input_idx++) {
|
||||
auto anf = origin_inputs[input_idx];
|
||||
|
@ -485,6 +489,8 @@ CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, bool valid_input, K
|
|||
} else if (optimize_depend && input_idx == kDependAttachNodeIndex) {
|
||||
cnode_inputs.push_back(origin_inputs[kRealInputIndexInDepend]);
|
||||
continue;
|
||||
} else if (optimize_control_depend) {
|
||||
cnode_inputs.push_back(NewValueNode(MakeValue(input_idx)));
|
||||
} else {
|
||||
*from_other_graph = true;
|
||||
// the input node is a cnode from other graph
|
||||
|
|
|
@ -117,6 +117,14 @@ std::tuple<FuncGraphPtr, AnfNodePtrList, AnfNodePtrList> TransformSegmentToAnfGr
|
|||
eqv.find(inps[kDependAttachNodeIndex]) == eqv.end()) {
|
||||
args.emplace_back(inps[kRealInputIndexInDepend]);
|
||||
args.emplace_back(inps[kRealInputIndexInDepend]);
|
||||
} else if (IsPrimitive(fn, prim::kPrimControlDepend) && inps.size() == 3) {
|
||||
for (size_t i = 1; i < inps.size(); ++i) {
|
||||
if (inps[i]->isa<CNode>() && std::find(lst.begin(), lst.end(), inps[i]) == lst.end()) {
|
||||
args.emplace_back(NewValueNode(MakeValue(i)));
|
||||
} else {
|
||||
args.emplace_back(ref(inps[i]));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
(void)std::transform(std::begin(inps) + 1, std::end(inps), std::back_inserter(args), ref);
|
||||
}
|
||||
|
|
|
@ -69,7 +69,91 @@ bool ContainMultiTarget(const std::vector<AnfNodePtr> &nodes) {
|
|||
return false;
|
||||
}
|
||||
|
||||
void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *nodes_ref) {
|
||||
bool ExtractNodes(const FuncGraphPtr &graph, const AnfNodePtr &prior_node, const AnfNodePtr &behind_node,
|
||||
std::vector<AnfNodePtr> *prior_nodes, std::vector<AnfNodePtr> *depend_nodes) {
|
||||
MS_EXCEPTION_IF_NULL(prior_node);
|
||||
MS_EXCEPTION_IF_NULL(behind_node);
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
auto manager = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manager);
|
||||
auto &node_users = manager->node_users();
|
||||
if (prior_node->isa<Parameter>()) {
|
||||
for (auto &user : node_users[prior_node]) {
|
||||
auto cnode = user.first->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
if (!IsPrimitiveCNode(cnode, prim::kPrimControlDepend)) {
|
||||
prior_nodes->emplace_back(cnode);
|
||||
}
|
||||
}
|
||||
} else if (!IsPrimitiveCNode(prior_node, prim::kPrimControlDepend)) {
|
||||
prior_nodes->emplace_back(prior_node);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
if (behind_node->isa<Parameter>()) {
|
||||
for (auto &user : node_users[behind_node]) {
|
||||
auto cnode = user.first->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
if (!IsPrimitiveCNode(cnode, prim::kPrimControlDepend)) {
|
||||
depend_nodes->emplace_back(cnode);
|
||||
}
|
||||
}
|
||||
} else if (!IsPrimitiveCNode(behind_node, prim::kPrimControlDepend)) {
|
||||
depend_nodes->emplace_back(behind_node);
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void AddControlEdge(const FuncGraphPtr &graph, const AnfNodePtr &node,
|
||||
std::map<AnfNodePtr, std::vector<AnfNodePtr>> *control_edges,
|
||||
std::map<AnfNodePtr, size_t> *nodes_ref) {
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto input_cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(input_cnode);
|
||||
auto prior_node = input_cnode->input(kControlDependPriorIndex);
|
||||
auto depend_node = input_cnode->input(kControlDependBehindIndex);
|
||||
MS_EXCEPTION_IF_NULL(prior_node);
|
||||
MS_EXCEPTION_IF_NULL(depend_node);
|
||||
PrimitivePtr prim_ptr = GetValueNode<PrimitivePtr>(input_cnode->input(0));
|
||||
MS_EXCEPTION_IF_NULL(prim_ptr);
|
||||
ValuePtr mode_ptr = prim_ptr->GetAttr("depend_mode");
|
||||
int depend_mode = 0;
|
||||
if (mode_ptr != nullptr) {
|
||||
depend_mode = GetValue<int>(mode_ptr);
|
||||
}
|
||||
if ((prior_node->isa<Parameter>() || depend_node->isa<Parameter>()) && depend_mode == 0) {
|
||||
return;
|
||||
}
|
||||
std::vector<AnfNodePtr> prior_nodes;
|
||||
std::vector<AnfNodePtr> behind_nodes;
|
||||
if (!ExtractNodes(graph, prior_node, depend_node, &prior_nodes, &behind_nodes)) {
|
||||
return;
|
||||
}
|
||||
for (auto &first_node : prior_nodes) {
|
||||
for (auto &second_node : behind_nodes) {
|
||||
MS_EXCEPTION_IF_NULL(first_node);
|
||||
MS_EXCEPTION_IF_NULL(second_node);
|
||||
auto iter = control_edges->find(second_node);
|
||||
if (iter == control_edges->end()) {
|
||||
(void)control_edges->insert(
|
||||
std::pair<AnfNodePtr, std::vector<AnfNodePtr>>(second_node, std::vector<AnfNodePtr>{first_node}));
|
||||
} else {
|
||||
iter->second.emplace_back(first_node);
|
||||
}
|
||||
auto ref_iter = nodes_ref->find(first_node);
|
||||
if (ref_iter != nodes_ref->end()) {
|
||||
ref_iter->second++;
|
||||
} else {
|
||||
(void)nodes_ref->insert(std::pair<AnfNodePtr, size_t>(first_node, 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *nodes_ref,
|
||||
std::map<AnfNodePtr, std::vector<AnfNodePtr>> *control_edges) {
|
||||
std::queue<AnfNodePtr> queue;
|
||||
queue.push(graph->get_return());
|
||||
std::set<AnfNodePtr> visited;
|
||||
|
@ -83,6 +167,9 @@ void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *n
|
|||
auto cnode = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
for (auto &input : cnode->inputs()) {
|
||||
if (IsPrimitiveCNode(input, prim::kPrimControlDepend)) {
|
||||
AddControlEdge(graph, input, control_edges, nodes_ref);
|
||||
}
|
||||
auto iter = nodes_ref->find(input);
|
||||
if (iter != nodes_ref->end()) {
|
||||
iter->second++;
|
||||
|
@ -142,7 +229,8 @@ std::vector<AnfNodePtr> SplitSort(const FuncGraphPtr &graph, const std::string &
|
|||
std::stack<AnfNodePtr> to_visit;
|
||||
std::stack<AnfNodePtr> next_to_visit;
|
||||
std::map<AnfNodePtr, size_t> nodes_ref;
|
||||
CalcNodeRefCount(graph, &nodes_ref);
|
||||
std::map<AnfNodePtr, std::vector<AnfNodePtr>> control_edges;
|
||||
CalcNodeRefCount(graph, &nodes_ref, &control_edges);
|
||||
std::string handle_target = default_target;
|
||||
std::string next_target = "";
|
||||
to_visit.push(graph->get_return());
|
||||
|
@ -162,6 +250,10 @@ std::vector<AnfNodePtr> SplitSort(const FuncGraphPtr &graph, const std::string &
|
|||
MS_EXCEPTION_IF_NULL(cnode);
|
||||
auto node_inputs = cnode->inputs();
|
||||
std::reverse(node_inputs.begin(), node_inputs.end());
|
||||
auto ctrl_inputs = control_edges.find(node);
|
||||
if (ctrl_inputs != control_edges.end()) {
|
||||
node_inputs.insert(node_inputs.end(), ctrl_inputs->second.begin(), ctrl_inputs->second.end());
|
||||
}
|
||||
for (auto &input : node_inputs) {
|
||||
auto iter = nodes_ref.find(input);
|
||||
if (iter != nodes_ref.end()) {
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include "ir/func_graph.h"
|
||||
#include "ir/primitive.h"
|
||||
#include "utils/context/ms_context.h"
|
||||
#include "base/core_ops.h"
|
||||
|
||||
namespace mindspore {
|
||||
// namespace to support intermediate representation definition
|
||||
|
@ -217,6 +218,15 @@ std::string GetCNodeTarget(const AnfNodePtr &node) {
|
|||
auto primitive = value->cast<PrimitivePtr>();
|
||||
auto att_target = primitive->GetAttr("primitive_target");
|
||||
if (att_target != nullptr) {
|
||||
if (IsPrimitive(attr_input, prim::kPrimImageSummary) || IsPrimitive(attr_input, prim::kPrimScalarSummary) ||
|
||||
IsPrimitive(attr_input, prim::kPrimTensorSummary) || IsPrimitive(attr_input, prim::kPrimHistogramSummary) ||
|
||||
IsPrimitive(attr_input, prim::kPrimMakeTuple) || IsPrimitive(attr_input, prim::kPrimStateSetItem) ||
|
||||
IsPrimitive(attr_input, prim::kPrimDepend) || IsPrimitive(attr_input, prim::kPrimTupleGetItem) ||
|
||||
IsPrimitive(attr_input, prim::kPrimControlDepend) || IsPrimitive(attr_input, prim::kPrimReturn) ||
|
||||
IsPrimitive(attr_input, prim::kPrimPartial)) {
|
||||
primitive->EraseAttr("primitive_target");
|
||||
return default_target;
|
||||
}
|
||||
if (!att_target->isa<StringImm>()) {
|
||||
MS_LOG(EXCEPTION) << "Only support string CPU|GPU|Ascend for primitive_target";
|
||||
}
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net1(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.relu1 = P.ReLU()
|
||||
self.relu2 = P.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.control = P.ControlDepend()
|
||||
|
||||
def construct(self, x, y):
|
||||
a = self.relu1(x)
|
||||
b = self.relu2(y)
|
||||
c = self.mul(a, b)
|
||||
e = self.control(a, b)
|
||||
return c, e
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.relu1 = P.ReLU()
|
||||
self.relu2 = P.ReLU().add_prim_attr("primitive_target", "CPU")
|
||||
self.mul = P.Mul()
|
||||
self.control = P.ControlDepend()
|
||||
|
||||
def construct(self, x, y):
|
||||
a = self.relu1(x)
|
||||
b = self.relu2(y)
|
||||
c = self.mul(a, b)
|
||||
e = self.control(a, b)
|
||||
return c, e
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
net1 = Net1()
|
||||
output1 = net1(Tensor(x), Tensor(y))
|
||||
|
||||
context.set_context(save_graphs=True)
|
||||
net2 = Net2()
|
||||
output2 = net2(Tensor(x), Tensor(y))
|
||||
assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())
|
||||
print("##success##")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_net()
|
Loading…
Reference in New Issue