!2967 Optimize ControlDepend for heterogeneous_execution

Merge pull request !2967 from huanghui/heterogeneous-backend-control-depend-optimize
This commit is contained in:
mindspore-ci-bot 2020-07-21 17:34:45 +08:00 committed by Gitee
commit 240c8c0664
5 changed files with 189 additions and 2 deletions

View File

@ -451,10 +451,14 @@ CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, bool valid_input, K
}
auto origin_inputs = cnode->inputs();
bool optimize_depend = false;
bool optimize_control_depend = false;
if (IsPrimitiveCNode(cnode, prim::kPrimDepend) && origin_inputs.size() == 3 &&
origin_inputs[kRealInputIndexInDepend]->isa<ValueNode>()) {
optimize_depend = true;
}
if (IsPrimitiveCNode(cnode, prim::kPrimControlDepend) && origin_inputs.size() == 3) {
optimize_control_depend = true;
}
// if has multiple depends,only select first depend as parameter
for (size_t input_idx = 1; input_idx < origin_inputs.size(); input_idx++) {
auto anf = origin_inputs[input_idx];
@ -485,6 +489,8 @@ CNodePtr SessionBasic::CreateNewCNode(const CNodePtr &cnode, bool valid_input, K
} else if (optimize_depend && input_idx == kDependAttachNodeIndex) {
cnode_inputs.push_back(origin_inputs[kRealInputIndexInDepend]);
continue;
} else if (optimize_control_depend) {
cnode_inputs.push_back(NewValueNode(MakeValue(input_idx)));
} else {
*from_other_graph = true;
// the input node is a cnode from other graph

View File

@ -117,6 +117,14 @@ std::tuple<FuncGraphPtr, AnfNodePtrList, AnfNodePtrList> TransformSegmentToAnfGr
eqv.find(inps[kDependAttachNodeIndex]) == eqv.end()) {
args.emplace_back(inps[kRealInputIndexInDepend]);
args.emplace_back(inps[kRealInputIndexInDepend]);
} else if (IsPrimitive(fn, prim::kPrimControlDepend) && inps.size() == 3) {
for (size_t i = 1; i < inps.size(); ++i) {
if (inps[i]->isa<CNode>() && std::find(lst.begin(), lst.end(), inps[i]) == lst.end()) {
args.emplace_back(NewValueNode(MakeValue(i)));
} else {
args.emplace_back(ref(inps[i]));
}
}
} else {
(void)std::transform(std::begin(inps) + 1, std::end(inps), std::back_inserter(args), ref);
}

View File

@ -69,7 +69,91 @@ bool ContainMultiTarget(const std::vector<AnfNodePtr> &nodes) {
return false;
}
void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *nodes_ref) {
bool ExtractNodes(const FuncGraphPtr &graph, const AnfNodePtr &prior_node, const AnfNodePtr &behind_node,
std::vector<AnfNodePtr> *prior_nodes, std::vector<AnfNodePtr> *depend_nodes) {
MS_EXCEPTION_IF_NULL(prior_node);
MS_EXCEPTION_IF_NULL(behind_node);
MS_EXCEPTION_IF_NULL(graph);
auto manager = graph->manager();
MS_EXCEPTION_IF_NULL(manager);
auto &node_users = manager->node_users();
if (prior_node->isa<Parameter>()) {
for (auto &user : node_users[prior_node]) {
auto cnode = user.first->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
if (!IsPrimitiveCNode(cnode, prim::kPrimControlDepend)) {
prior_nodes->emplace_back(cnode);
}
}
} else if (!IsPrimitiveCNode(prior_node, prim::kPrimControlDepend)) {
prior_nodes->emplace_back(prior_node);
} else {
return false;
}
if (behind_node->isa<Parameter>()) {
for (auto &user : node_users[behind_node]) {
auto cnode = user.first->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
if (!IsPrimitiveCNode(cnode, prim::kPrimControlDepend)) {
depend_nodes->emplace_back(cnode);
}
}
} else if (!IsPrimitiveCNode(behind_node, prim::kPrimControlDepend)) {
depend_nodes->emplace_back(behind_node);
} else {
return false;
}
return true;
}
void AddControlEdge(const FuncGraphPtr &graph, const AnfNodePtr &node,
std::map<AnfNodePtr, std::vector<AnfNodePtr>> *control_edges,
std::map<AnfNodePtr, size_t> *nodes_ref) {
MS_EXCEPTION_IF_NULL(node);
auto input_cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(input_cnode);
auto prior_node = input_cnode->input(kControlDependPriorIndex);
auto depend_node = input_cnode->input(kControlDependBehindIndex);
MS_EXCEPTION_IF_NULL(prior_node);
MS_EXCEPTION_IF_NULL(depend_node);
PrimitivePtr prim_ptr = GetValueNode<PrimitivePtr>(input_cnode->input(0));
MS_EXCEPTION_IF_NULL(prim_ptr);
ValuePtr mode_ptr = prim_ptr->GetAttr("depend_mode");
int depend_mode = 0;
if (mode_ptr != nullptr) {
depend_mode = GetValue<int>(mode_ptr);
}
if ((prior_node->isa<Parameter>() || depend_node->isa<Parameter>()) && depend_mode == 0) {
return;
}
std::vector<AnfNodePtr> prior_nodes;
std::vector<AnfNodePtr> behind_nodes;
if (!ExtractNodes(graph, prior_node, depend_node, &prior_nodes, &behind_nodes)) {
return;
}
for (auto &first_node : prior_nodes) {
for (auto &second_node : behind_nodes) {
MS_EXCEPTION_IF_NULL(first_node);
MS_EXCEPTION_IF_NULL(second_node);
auto iter = control_edges->find(second_node);
if (iter == control_edges->end()) {
(void)control_edges->insert(
std::pair<AnfNodePtr, std::vector<AnfNodePtr>>(second_node, std::vector<AnfNodePtr>{first_node}));
} else {
iter->second.emplace_back(first_node);
}
auto ref_iter = nodes_ref->find(first_node);
if (ref_iter != nodes_ref->end()) {
ref_iter->second++;
} else {
(void)nodes_ref->insert(std::pair<AnfNodePtr, size_t>(first_node, 1));
}
}
}
}
void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *nodes_ref,
std::map<AnfNodePtr, std::vector<AnfNodePtr>> *control_edges) {
std::queue<AnfNodePtr> queue;
queue.push(graph->get_return());
std::set<AnfNodePtr> visited;
@ -83,6 +167,9 @@ void CalcNodeRefCount(const FuncGraphPtr &graph, std::map<AnfNodePtr, size_t> *n
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
for (auto &input : cnode->inputs()) {
if (IsPrimitiveCNode(input, prim::kPrimControlDepend)) {
AddControlEdge(graph, input, control_edges, nodes_ref);
}
auto iter = nodes_ref->find(input);
if (iter != nodes_ref->end()) {
iter->second++;
@ -142,7 +229,8 @@ std::vector<AnfNodePtr> SplitSort(const FuncGraphPtr &graph, const std::string &
std::stack<AnfNodePtr> to_visit;
std::stack<AnfNodePtr> next_to_visit;
std::map<AnfNodePtr, size_t> nodes_ref;
CalcNodeRefCount(graph, &nodes_ref);
std::map<AnfNodePtr, std::vector<AnfNodePtr>> control_edges;
CalcNodeRefCount(graph, &nodes_ref, &control_edges);
std::string handle_target = default_target;
std::string next_target = "";
to_visit.push(graph->get_return());
@ -162,6 +250,10 @@ std::vector<AnfNodePtr> SplitSort(const FuncGraphPtr &graph, const std::string &
MS_EXCEPTION_IF_NULL(cnode);
auto node_inputs = cnode->inputs();
std::reverse(node_inputs.begin(), node_inputs.end());
auto ctrl_inputs = control_edges.find(node);
if (ctrl_inputs != control_edges.end()) {
node_inputs.insert(node_inputs.end(), ctrl_inputs->second.begin(), ctrl_inputs->second.end());
}
for (auto &input : node_inputs) {
auto iter = nodes_ref.find(input);
if (iter != nodes_ref.end()) {

View File

@ -26,6 +26,7 @@
#include "ir/func_graph.h"
#include "ir/primitive.h"
#include "utils/context/ms_context.h"
#include "base/core_ops.h"
namespace mindspore {
// namespace to support intermediate representation definition
@ -217,6 +218,15 @@ std::string GetCNodeTarget(const AnfNodePtr &node) {
auto primitive = value->cast<PrimitivePtr>();
auto att_target = primitive->GetAttr("primitive_target");
if (att_target != nullptr) {
if (IsPrimitive(attr_input, prim::kPrimImageSummary) || IsPrimitive(attr_input, prim::kPrimScalarSummary) ||
IsPrimitive(attr_input, prim::kPrimTensorSummary) || IsPrimitive(attr_input, prim::kPrimHistogramSummary) ||
IsPrimitive(attr_input, prim::kPrimMakeTuple) || IsPrimitive(attr_input, prim::kPrimStateSetItem) ||
IsPrimitive(attr_input, prim::kPrimDepend) || IsPrimitive(attr_input, prim::kPrimTupleGetItem) ||
IsPrimitive(attr_input, prim::kPrimControlDepend) || IsPrimitive(attr_input, prim::kPrimReturn) ||
IsPrimitive(attr_input, prim::kPrimPartial)) {
primitive->EraseAttr("primitive_target");
return default_target;
}
if (!att_target->isa<StringImm>()) {
MS_LOG(EXCEPTION) << "Only support string CPU|GPU|Ascend for primitive_target";
}

View File

@ -0,0 +1,71 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net1(nn.Cell):
def __init__(self):
super(Net1, self).__init__()
self.relu1 = P.ReLU()
self.relu2 = P.ReLU()
self.mul = P.Mul()
self.control = P.ControlDepend()
def construct(self, x, y):
a = self.relu1(x)
b = self.relu2(y)
c = self.mul(a, b)
e = self.control(a, b)
return c, e
class Net2(nn.Cell):
def __init__(self):
super(Net2, self).__init__()
self.relu1 = P.ReLU()
self.relu2 = P.ReLU().add_prim_attr("primitive_target", "CPU")
self.mul = P.Mul()
self.control = P.ControlDepend()
def construct(self, x, y):
a = self.relu1(x)
b = self.relu2(y)
c = self.mul(a, b)
e = self.control(a, b)
return c, e
def test_net():
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
y = np.random.randn(2, 3, 3, 4).astype(np.float32)
net1 = Net1()
output1 = net1(Tensor(x), Tensor(y))
context.set_context(save_graphs=True)
net2 = Net2()
output2 = net2(Tensor(x), Tensor(y))
assert np.allclose(output1[0].asnumpy(), output2[0].asnumpy())
print("##success##")
if __name__ == "__main__":
test_net()