forked from mindspore-Ecosystem/mindspore
sync 0807 code to ms-incubator
This commit is contained in:
commit
22336c0843
|
@ -17,7 +17,7 @@
|
|||
url = https://gitee.com/mindspore/akg.git
|
||||
[submodule "graphengine"]
|
||||
path = graphengine
|
||||
url = https://gitee.com/mindspore/graphengine.git
|
||||
url = https://gitee.com/ms-incubator/graphengine.git
|
||||
[submodule "third_party/OpenCL-CLHPP"]
|
||||
path = third_party/OpenCL-CLHPP
|
||||
url = https://github.com/KhronosGroup/OpenCL-CLHPP.git
|
||||
|
|
|
@ -1 +1 @@
|
|||
Subproject commit 6d12411003164d88eaed62e1ead33761cbfa15ef
|
||||
Subproject commit e64a1cfc0457c96859bc9be1693443aa14f2e9df
|
|
@ -309,12 +309,6 @@ INPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{1, INPUT_DESC(features)}, {2, INPUT
|
|||
ATTR_MAP(SoftmaxCrossEntropyWithLogits) = EMPTY_ATTR_MAP;
|
||||
OUTPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{0, OUTPUT_DESC(loss)}, {1, OUTPUT_DESC(backprop)}};
|
||||
|
||||
// MeanGrad
|
||||
INPUT_MAP(MeanGrad) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(MeanGrad) = {{2, ATTR_DESC(mean_grad_output_shape_value, kOpFormat_NHWC,
|
||||
AnyTraits<std::vector<int64_t>>(), AnyTraits<int64_t>())}};
|
||||
ATTR_MAP(MeanGrad) = {{"mode", ATTR_DESC(mode, AnyTraits<int64_t>())}};
|
||||
|
||||
INPUT_MAP(SliceD) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(SliceD) = {{2, ATTR_DESC(offsets, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||
{3, ATTR_DESC(size, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
|
||||
|
@ -431,11 +425,6 @@ INPUT_MAP(TopK) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(k)}};
|
|||
ATTR_MAP(TopK) = {{"sorted", ATTR_DESC(sorted, AnyTraits<bool>())}};
|
||||
OUTPUT_MAP(TopK) = {{0, OUTPUT_DESC(values)}, {1, OUTPUT_DESC(indices)}};
|
||||
|
||||
// Multiply
|
||||
INPUT_MAP(Multiply) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}};
|
||||
ATTR_MAP(Multiply) = EMPTY_ATTR_MAP;
|
||||
OUTPUT_MAP(Multiply) = {{0, OUTPUT_DESC(z)}};
|
||||
|
||||
// TileD
|
||||
INPUT_MAP(TileD) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(TileD) = {{2, ATTR_DESC(multiples, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
|
||||
|
|
|
@ -70,8 +70,6 @@ DECLARE_OP_ADAPTER(AssignSub)
|
|||
DECLARE_OP_USE_OUTPUT(AssignSub)
|
||||
|
||||
DECLARE_OP_ADAPTER(ReduceMean)
|
||||
DECLARE_OP_ADAPTER(Multiply)
|
||||
DECLARE_OP_USE_OUTPUT(Multiply)
|
||||
|
||||
// ** Distributed Operations **
|
||||
DECLARE_OP_ADAPTER(HcomReduceScatter)
|
||||
|
@ -327,9 +325,6 @@ DECLARE_OP_USE_OUTPUT(MatMulV2)
|
|||
DECLARE_OP_ADAPTER(SoftmaxCrossEntropyWithLogits)
|
||||
DECLARE_OP_USE_OUTPUT(SoftmaxCrossEntropyWithLogits)
|
||||
|
||||
DECLARE_OP_ADAPTER(MeanGrad)
|
||||
DECLARE_OP_USE_INPUT_ATTR(MeanGrad)
|
||||
|
||||
DECLARE_OP_ADAPTER(Assign)
|
||||
DECLARE_OP_USE_OUTPUT(Assign)
|
||||
DECLARE_OP_ADAPTER(Constant)
|
||||
|
|
|
@ -293,12 +293,6 @@ INPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{1, INPUT_DESC(features)}, {2, INPUT
|
|||
ATTR_MAP(SoftmaxCrossEntropyWithLogits) = EMPTY_ATTR_MAP;
|
||||
OUTPUT_MAP(SoftmaxCrossEntropyWithLogits) = {{0, OUTPUT_DESC(loss)}, {1, OUTPUT_DESC(backprop)}};
|
||||
|
||||
// MeanGrad
|
||||
INPUT_MAP(MeanGrad) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(MeanGrad) = {{2, ATTR_DESC(mean_grad_output_shape_value, kOpFormat_NHWC,
|
||||
AnyTraits<std::vector<int64_t>>(), AnyTraits<int64_t>())}};
|
||||
ATTR_MAP(MeanGrad) = {{"mode", ATTR_DESC(mode, AnyTraits<int64_t>())}};
|
||||
|
||||
INPUT_MAP(SliceD) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(SliceD) = {{2, ATTR_DESC(offsets, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||
{3, ATTR_DESC(size, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
|
||||
|
@ -415,11 +409,6 @@ INPUT_MAP(TopK) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(k)}};
|
|||
ATTR_MAP(TopK) = {{"sorted", ATTR_DESC(sorted, AnyTraits<bool>())}};
|
||||
OUTPUT_MAP(TopK) = {{0, OUTPUT_DESC(values)}, {1, OUTPUT_DESC(indices)}};
|
||||
|
||||
// Multiply
|
||||
INPUT_MAP(Multiply) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(y)}};
|
||||
ATTR_MAP(Multiply) = EMPTY_ATTR_MAP;
|
||||
OUTPUT_MAP(Multiply) = {{0, OUTPUT_DESC(z)}};
|
||||
|
||||
// TileD
|
||||
INPUT_MAP(TileD) = {{1, INPUT_DESC(x)}};
|
||||
INPUT_ATTR_MAP(TileD) = {{2, ATTR_DESC(multiples, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())}};
|
||||
|
|
|
@ -15,6 +15,7 @@
|
|||
"""aicpu ops"""
|
||||
from .init_data_set_queue import _init_data_set_queue_aicpu
|
||||
from .embedding_lookup import _embedding_lookup_aicpu
|
||||
from .padding import _padding_aicpu
|
||||
from .dropout_genmask import _dropout_genmask_aicpu
|
||||
from .get_next import _get_next_aicpu
|
||||
from .print_tensor import _print_aicpu
|
||||
|
@ -43,3 +44,7 @@ from .laplace import _laplace_aicpu
|
|||
from .strided_slice import _strided_slice_aicpu
|
||||
from .strided_slice_grad import _strided_slice_grad_aicpu
|
||||
from .end_of_sequence import _end_of_sequence_aicpu
|
||||
from .fused_sparse_adam import _fused_sparse_adam_aicpu
|
||||
from .fused_sparse_lazy_adam import _fused_sparse_lazy_adam_aicpu
|
||||
from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu
|
||||
from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FusedSparseAdam op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
fused_sparse_adam_op_info = AiCPURegOp("FusedSparseAdam") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("use_locking", "bool") \
|
||||
.attr("use_nesterov", "bool") \
|
||||
.input(0, "var", "required") \
|
||||
.input(1, "m", "required") \
|
||||
.input(2, "v", "required") \
|
||||
.input(3, "beta1_power", "required") \
|
||||
.input(4, "beta2_power", "required") \
|
||||
.input(5, "lr", "required") \
|
||||
.input(6, "beta1", "required") \
|
||||
.input(7, "beta2", "required") \
|
||||
.input(8, "epsilon", "required") \
|
||||
.input(9, "grad", "required") \
|
||||
.input(10, "indices", "required") \
|
||||
.output(0, "var", "required") \
|
||||
.output(1, "m", "required") \
|
||||
.output(2, "v", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(fused_sparse_adam_op_info)
|
||||
def _fused_sparse_adam_aicpu():
|
||||
"""FusedSparseAdam aicpu register"""
|
||||
return
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FusedSparseFtrl op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
fused_sparse_ftrl_op_info = AiCPURegOp("FusedSparseFtrl") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("lr", "float") \
|
||||
.attr("l1", "float") \
|
||||
.attr("l2", "float") \
|
||||
.attr("lr_power", "float") \
|
||||
.attr("use_locking", "bool") \
|
||||
.input(0, "var", "required") \
|
||||
.input(1, "accum", "required") \
|
||||
.input(2, "linear", "required") \
|
||||
.input(3, "grad", "required") \
|
||||
.input(4, "indices", "required") \
|
||||
.output(0, "var", "required") \
|
||||
.output(1, "accum", "required") \
|
||||
.output(2, "linear", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(fused_sparse_ftrl_op_info)
|
||||
def _fused_sparse_ftrl_aicpu():
|
||||
"""FusedSparseFtrl aicpu register"""
|
||||
return
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FusedSparseLazyAdam op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
fused_sparse_lazy_adam_op_info = AiCPURegOp("FusedSparseLazyAdam") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("use_locking", "bool") \
|
||||
.attr("use_nesterov", "bool") \
|
||||
.input(0, "var", "required") \
|
||||
.input(1, "m", "required") \
|
||||
.input(2, "v", "required") \
|
||||
.input(3, "beta1_power", "required") \
|
||||
.input(4, "beta2_power", "required") \
|
||||
.input(5, "lr", "required") \
|
||||
.input(6, "beta1", "required") \
|
||||
.input(7, "beta2", "required") \
|
||||
.input(8, "epsilon", "required") \
|
||||
.input(9, "grad", "required") \
|
||||
.input(10, "indices", "required") \
|
||||
.output(0, "var", "required") \
|
||||
.output(1, "m", "required") \
|
||||
.output(2, "v", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(fused_sparse_lazy_adam_op_info)
|
||||
def _fused_sparse_lazy_adam_aicpu():
|
||||
"""FusedSparseLazyAdam aicpu register"""
|
||||
return
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""FusedSparseProximalAdagrad op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
fused_sparse_proximal_adagrad_op_info = AiCPURegOp("FusedSparseProximalAdagrad") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("use_locking", "bool") \
|
||||
.input(0, "var", "required") \
|
||||
.input(1, "accum", "required") \
|
||||
.input(2, "lr", "required") \
|
||||
.input(3, "l1", "required") \
|
||||
.input(4, "l2", "required") \
|
||||
.input(5, "grad", "required") \
|
||||
.input(6, "indices", "required") \
|
||||
.output(0, "var", "required") \
|
||||
.output(1, "accum", "required") \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
|
||||
DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(fused_sparse_proximal_adagrad_op_info)
|
||||
def _fused_sparse_proximal_adagrad_aicpu():
|
||||
"""FusedSparseProximalAdagrad aicpu register"""
|
||||
return
|
|
@ -23,6 +23,7 @@ gamma_op_info = AiCPURegOp("Gamma") \
|
|||
.input(2, "beta", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.attr("seed2", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.get_op_info()
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Padding op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
padding_op_info = AiCPURegOp("Padding") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.attr("pad_dim_size", "int") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(padding_op_info)
|
||||
def _padding_aicpu():
|
||||
"""Padding AiCPU register"""
|
||||
return
|
|
@ -22,6 +22,7 @@ poisson_op_info = AiCPURegOp("Poisson") \
|
|||
.input(1, "mean", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.attr("seed2", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.I32_NCHW) \
|
||||
.get_op_info()
|
||||
|
|
|
@ -23,6 +23,7 @@ uniform_int_op_info = AiCPURegOp("UniformInt") \
|
|||
.input(2, "b", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.attr("seed2", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW, DataType.I32_NCHW) \
|
||||
.get_op_info()
|
||||
|
|
|
@ -19,12 +19,11 @@ from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataTyp
|
|||
uniform_real_op_info = AiCPURegOp("UniformReal") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "shape", "required") \
|
||||
.input(1, "a", "required") \
|
||||
.input(2, "b", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.attr("seed2", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(uniform_real_op_info)
|
||||
|
|
|
@ -27,7 +27,7 @@ from .clip_ops import clip_by_value
|
|||
from .multitype_ops.add_impl import hyper_add
|
||||
from .multitype_ops.ones_like_impl import ones_like
|
||||
from .multitype_ops.zeros_like_impl import zeros_like
|
||||
from .random_ops import set_seed, normal, multinomial
|
||||
from .random_ops import set_seed, normal, multinomial, uniform
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
@ -49,6 +49,7 @@ __all__ = [
|
|||
'ones_like',
|
||||
'zip_operation',
|
||||
'set_seed',
|
||||
'uniform',
|
||||
'normal',
|
||||
'multinomial',
|
||||
'clip_by_value',]
|
||||
|
|
|
@ -13,7 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Operations for random number generatos."""
|
||||
"""Operations for random number generators."""
|
||||
|
||||
from .. import operations as P
|
||||
from .. import functional as F
|
||||
|
@ -84,6 +84,7 @@ def normal(shape, mean, stddev, seed=0):
|
|||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> stddev = Tensor(1.0, mstype.float32)
|
||||
>>> C.set_seed(10)
|
||||
>>> output = C.normal(shape, mean, stddev, seed=5)
|
||||
"""
|
||||
mean_dtype = F.dtype(mean)
|
||||
|
@ -144,3 +145,45 @@ def multinomial(inputs, num_sample=None, replacement=True, seed=0):
|
|||
_, indices = P.TopK()(vals, num_sample)
|
||||
return indices
|
||||
return P.Multinomial(seed=seed)(inputs, num_sample)
|
||||
|
||||
def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
||||
"""
|
||||
Generates random numbers according to the Uniform (or Gaussian) random number distribution.
|
||||
It is defined as:
|
||||
|
||||
Args:
|
||||
shape (tuple): The shape of random tensor to be generated.
|
||||
a (Tensor): The a distribution parameter.
|
||||
It defines the minimum possibly generated value. With int32 or float32 data type.
|
||||
If dtype is int32, only one number is allowed.
|
||||
b (Tensor): The b distribution parameter.
|
||||
It defines the maximum possibly generated value. With int32 or float32 data type.
|
||||
If dtype is int32, only one number is allowed.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
|
||||
The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> a = Tensor(1.0, mstype.float32)
|
||||
>>> b = Tensor(1.0, mstype.float32)
|
||||
>>> C.set_seed(10)
|
||||
>>> output = C.uniform(shape, a, b, seed=5)
|
||||
"""
|
||||
a_dtype = F.dtype(a)
|
||||
b_dtype = F.dtype(b)
|
||||
const_utils.check_tensors_dtype_same(a_dtype, dtype, "uniform")
|
||||
const_utils.check_tensors_dtype_same(b_dtype, dtype, "uniform")
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
if const_utils.is_same_type(dtype, mstype.int32):
|
||||
rnd = P.UniformInt(seed1, seed2)
|
||||
value = rnd(shape, a, b)
|
||||
else:
|
||||
uniform_real = P.UniformReal(seed1, seed2)
|
||||
rnd = uniform_real(shape)
|
||||
value = rnd * (b - a) + a
|
||||
return value
|
||||
|
|
|
@ -27,7 +27,7 @@ from .array_ops import (Argmax, Argmin, Cast, Concat, Pack, Unpack,
|
|||
Rank, Reshape, ResizeNearestNeighbor, ArgMinWithValue,
|
||||
SameTypeShape, ScatterAdd, ScatterSub, ScatterMul, ScatterDiv, ScatterMax, ScatterMin,
|
||||
ScatterUpdate, ScalarToArray, ScalarToTensor, ScatterNd, ScatterNdUpdate, Select,
|
||||
Shape, Size, Slice, Split, TransShape, ParallelConcat,
|
||||
Shape, Size, Slice, Split, TransShape, ParallelConcat, Padding,
|
||||
ScatterNdAdd, ScatterNdSub, ScatterNonAliasingAdd, ReverseV2, Rint,
|
||||
Squeeze, StridedSlice, Tile, TensorScatterUpdate,
|
||||
Transpose, TruncatedNormal, TupleToArray, UnsortedSegmentMin, UnsortedSegmentProd,
|
||||
|
@ -147,6 +147,7 @@ __all__ = [
|
|||
'GatherV2',
|
||||
'SparseGatherV2',
|
||||
'EmbeddingLookup',
|
||||
'Padding',
|
||||
'Concat',
|
||||
'Pack',
|
||||
'Unpack',
|
||||
|
|
|
@ -645,6 +645,46 @@ class SparseGatherV2(GatherV2):
|
|||
"""
|
||||
|
||||
|
||||
class Padding(PrimitiveWithInfer):
|
||||
"""
|
||||
Extend the last dimension of input tensor from 1 to pad_dim_size, fill with 0.
|
||||
|
||||
Args:
|
||||
pad_dim_size (int): The extend value of last dimension of x, must be positive.
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The rank of x should be at least 2.
|
||||
The last dimension of x should be 1.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([[8], [10]]), mindspore.float32)
|
||||
>>> pad_dim_size = 4
|
||||
>>> out = P.Padding(pad_dim_size)(x)
|
||||
[[8, 0, 0, 0], [10, 0, 0, 0]]
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self, pad_dim_size=8):
|
||||
"""init padding"""
|
||||
validator.check_value_type("pad_dim_size", pad_dim_size, [int], self.name)
|
||||
validator.check_integer("pad_dim_size", pad_dim_size, 0, Rel.GT, self.name)
|
||||
self.pad_dim_size = pad_dim_size
|
||||
|
||||
def __infer__(self, x):
|
||||
validator.check_subclass("x", x['dtype'], mstype.tensor, self.name)
|
||||
x_shape = list(x['shape'])
|
||||
validator.check_integer("rank of x", len(x_shape), 1, Rel.GT, self.name)
|
||||
validator.check_integer("last dim of x", x_shape[-1], 1, Rel.EQ, self.name)
|
||||
out_shape = x_shape
|
||||
out_shape[-1] = self.pad_dim_size
|
||||
out = {'shape': out_shape,
|
||||
'dtype': x['dtype'],
|
||||
'value': None}
|
||||
return out
|
||||
|
||||
|
||||
class Split(PrimitiveWithInfer):
|
||||
"""
|
||||
Splits input tensor into output_num of tensors along the given axis and output numbers.
|
||||
|
|
|
@ -3372,6 +3372,7 @@ class FusedSparseProximalAdagrad(PrimitiveWithInfer):
|
|||
validator.check_tensor_type_same({'indices': indices_dtype}, valid_types, self.name)
|
||||
return var_dtype, accum_dtype
|
||||
|
||||
|
||||
class KLDivLoss(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes the Kullback-Leibler divergence between the target and the output.
|
||||
|
@ -3443,6 +3444,7 @@ class KLDivLoss(PrimitiveWithInfer):
|
|||
validator.check_tensor_type_same(args, valid_types, self.name)
|
||||
return x_type
|
||||
|
||||
|
||||
class BinaryCrossEntropy(PrimitiveWithInfer):
|
||||
r"""
|
||||
Computes the Binary Cross Entropy between the target and the output.
|
||||
|
|
|
@ -34,8 +34,7 @@ class StandardNormal(PrimitiveWithInfer):
|
|||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
||||
Outputs:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
The dtype is float32.
|
||||
Tensor. The shape that the input 'shape' denotes. The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
|
@ -126,8 +125,8 @@ class Gamma(PrimitiveWithInfer):
|
|||
\text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}},
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -149,10 +148,11 @@ class Gamma(PrimitiveWithInfer):
|
|||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init Gamma"""
|
||||
self.init_prim_io_names(inputs=['shape', 'alpha', 'beta'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, alpha, beta):
|
||||
shape_v = shape["value"]
|
||||
|
@ -180,8 +180,8 @@ class Poisson(PrimitiveWithInfer):
|
|||
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!},
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -200,10 +200,11 @@ class Poisson(PrimitiveWithInfer):
|
|||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init Poisson"""
|
||||
self.init_prim_io_names(inputs=['shape', 'mean'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, mean):
|
||||
shape_v = shape["value"]
|
||||
|
@ -223,7 +224,7 @@ class Poisson(PrimitiveWithInfer):
|
|||
|
||||
class UniformInt(PrimitiveWithInfer):
|
||||
r"""
|
||||
Produces random integer values i, uniformly distributed on the closed interval [a, b], that is,
|
||||
Produces random integer values i, uniformly distributed on the closed interval [a, b), that is,
|
||||
distributed according to the discrete probability function:
|
||||
|
||||
.. math::
|
||||
|
@ -233,19 +234,18 @@ class UniformInt(PrimitiveWithInfer):
|
|||
The number in tensor a should be strictly less than b at any position after broadcasting.
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
- **a** (Tensor) - The a distribution parameter.
|
||||
It defines the minimum possibly generated value. With int32 data type.
|
||||
It defines the minimum possibly generated value. With int32 data type. Only one number is supported.
|
||||
- **b** (Tensor) - The b distribution parameter.
|
||||
It defines the maximum possibly generated value. With int32 data type.
|
||||
It defines the maximum possibly generated value. With int32 data type. Only one number is supported.
|
||||
|
||||
Outputs:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
|
||||
The dtype is int32.
|
||||
Tensor. The shape that the input 'shape' denotes. The dtype is int32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
|
@ -256,10 +256,11 @@ class UniformInt(PrimitiveWithInfer):
|
|||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init UniformInt"""
|
||||
self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, a, b):
|
||||
shape_v = shape["value"]
|
||||
|
@ -270,10 +271,12 @@ class UniformInt(PrimitiveWithInfer):
|
|||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
|
||||
validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.int32], self.name)
|
||||
validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.int32], self.name)
|
||||
broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name)
|
||||
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
|
||||
a_shape = a['shape']
|
||||
b_shape = b['shape']
|
||||
validator.check("dim of a", len(a_shape), '0(scalar)', 0, Rel.EQ, self.name)
|
||||
validator.check("dim of b", len(b_shape), '0(scalar)', 0, Rel.EQ, self.name)
|
||||
out = {
|
||||
'shape': broadcast_shape,
|
||||
'shape': shape_v,
|
||||
'dtype': mstype.int32,
|
||||
'value': None}
|
||||
return out
|
||||
|
@ -281,54 +284,40 @@ class UniformInt(PrimitiveWithInfer):
|
|||
|
||||
class UniformReal(PrimitiveWithInfer):
|
||||
r"""
|
||||
Produces random floating-point values i, uniformly distributed on the interval [min(a, b), max(a, b)), that is,\
|
||||
distributed according to the probability density function:
|
||||
|
||||
.. math::
|
||||
\text{P}(i|a,b) = \frac{1}{b-a},
|
||||
Produces random floating-point values i, uniformly distributed on the interval [0, 1).
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
- **a** (Tensor) - The a distribution parameter.
|
||||
It defines the minimum possibly generated value. With float32 data type.
|
||||
- **b** (Tensor) - The b distribution parameter.
|
||||
It defines the maximum possibly generated value. With float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
|
||||
The dtype is float32.
|
||||
Tensor. The shape that the input 'shape' denotes. The dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> a = Tensor(1.0, mstype.float32)
|
||||
>>> b = Tensor(5.0, mstype.float32)
|
||||
>>> uniform_real = P.UniformReal(seed=10)
|
||||
>>> output = uniform_real(shape, a, b)
|
||||
>>> uniformreal = P.UniformReal(seed=2)
|
||||
>>> output = uniformreal(shape)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
def __init__(self, seed=0, seed2=0):
|
||||
"""Init UniformReal"""
|
||||
self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output'])
|
||||
self.init_prim_io_names(inputs=['shape'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
validator.check_value_type('seed2', seed2, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, a, b):
|
||||
def __infer__(self, shape):
|
||||
shape_v = shape["value"]
|
||||
if shape_v is None:
|
||||
raise ValueError(f"For {self.name}, shape must be const.")
|
||||
validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||
for i, shape_i in enumerate(shape_v):
|
||||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
|
||||
validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.float32], self.name)
|
||||
validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.float32], self.name)
|
||||
broadcast_shape = get_broadcast_shape(a['shape'], b['shape'], self.name)
|
||||
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
|
||||
out = {
|
||||
'shape': broadcast_shape,
|
||||
'shape': shape_v,
|
||||
'dtype': mstype.float32,
|
||||
'value': None}
|
||||
return out
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
beta1_power = 0.9
|
||||
beta2_power = 0.999
|
||||
lr = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
epsilon = 1e-8
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fused_sparse_adam = P.FusedSparseAdam()
|
||||
self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
|
||||
self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
|
||||
self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
|
||||
|
||||
def construct(self, grad, indices):
|
||||
return self.fused_sparse_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon,
|
||||
grad, indices)
|
||||
|
||||
def test_net():
|
||||
gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148])
|
||||
.reshape([2, 1, 2]).astype(np.float32))
|
||||
indices = Tensor([0, 1], mstype.int32)
|
||||
net = Net()
|
||||
output = net(gradient, indices)
|
||||
print(output)
|
||||
print(net.var.default_input)
|
||||
print(net.m.default_input)
|
||||
print(net.v.default_input)
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
lr = 0.01
|
||||
l1 = 0.0
|
||||
l2 = 0.0
|
||||
lr_power = -0.5
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fused_sparse_ftrl = P.FusedSparseFtrl(lr=0.1, l1=0.0, l2=0.0, lr_power=-0.5)
|
||||
self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var")
|
||||
self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum")
|
||||
self.linear = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="linear")
|
||||
|
||||
def construct(self, grad, indices):
|
||||
return self.fused_sparse_ftrl(self.var, self.accum, self.linear, grad, indices)
|
||||
|
||||
def test_net():
|
||||
gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2])
|
||||
.reshape([3, 3]).astype(np.float32))
|
||||
indices = Tensor(np.ones([3]), mstype.int32)
|
||||
net = Net()
|
||||
output = net(gradient, indices)
|
||||
print(output)
|
||||
print(net.var.default_input)
|
||||
print(net.accum.default_input)
|
||||
print(net.linear.default_input)
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
beta1_power = 0.9
|
||||
beta2_power = 0.999
|
||||
lr = 0.001
|
||||
beta1 = 0.9
|
||||
beta2 = 0.999
|
||||
epsilon = 1e-8
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fused_sparse_lazy_adam = P.FusedSparseLazyAdam()
|
||||
self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
|
||||
self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
|
||||
self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
|
||||
|
||||
def construct(self, grad, indices):
|
||||
return self.fused_sparse_lazy_adam(self.var, self.m, self.v, beta1_power, beta2_power,
|
||||
lr, beta1, beta2, epsilon, grad, indices)
|
||||
|
||||
def test_net():
|
||||
gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148])
|
||||
.reshape([2, 1, 2]).astype(np.float32))
|
||||
indices = Tensor([0, 1], mstype.int32)
|
||||
net = Net()
|
||||
output = net(gradient, indices)
|
||||
print(output)
|
||||
print(net.var.default_input)
|
||||
print(net.m.default_input)
|
||||
print(net.v.default_input)
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fused_sparse_proximal_adagrad = P.FusedSparseProximalAdagrad()
|
||||
self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var")
|
||||
self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum")
|
||||
self.lr = 0.01
|
||||
self.l1 = 0.0
|
||||
self.l2 = 0.0
|
||||
|
||||
def construct(self, grad, indices):
|
||||
return self.fused_sparse_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2,
|
||||
grad, indices)
|
||||
|
||||
def test_net():
|
||||
gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2])
|
||||
.reshape([3, 3]).astype(np.float32))
|
||||
indices = Tensor(np.ones([3]), mstype.int32)
|
||||
net = Net()
|
||||
output = net(gradient, indices)
|
||||
print(output)
|
||||
print(net.var.default_input)
|
||||
print(net.accum.default_input)
|
|
@ -24,9 +24,9 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.gamma = P.Gamma(seed=seed)
|
||||
self.gamma = P.Gamma(seed=seed, seed2=seed2)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, alpha, beta):
|
||||
|
@ -38,10 +38,9 @@ def test_net_1D():
|
|||
shape = (3, 2, 4)
|
||||
alpha = 1.0
|
||||
beta = 1.0
|
||||
net = Net(shape, seed)
|
||||
net = Net(shape=shape, seed=seed)
|
||||
talpha, tbeta = Tensor(alpha, mstype.float32), Tensor(beta, mstype.float32)
|
||||
output = net(talpha, tbeta)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
|
@ -50,8 +49,7 @@ def test_net_ND():
|
|||
shape = (3, 1, 2)
|
||||
alpha = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
beta = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
net = Net(shape=shape, seed=seed)
|
||||
talpha, tbeta = Tensor(alpha), Tensor(beta)
|
||||
output = net(talpha, tbeta)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 2)
|
||||
|
|
|
@ -32,6 +32,7 @@ class Net(nn.Cell):
|
|||
self.seed = seed
|
||||
|
||||
def construct(self, mean, stddev):
|
||||
C.set_seed(20)
|
||||
return C.normal(self.shape, mean, stddev, self.seed)
|
||||
|
||||
|
||||
|
@ -55,3 +56,4 @@ def test_net_ND():
|
|||
tmean, tstddev = Tensor(mean, mstype.float32), Tensor(stddev, mstype.float32)
|
||||
output = net(tmean, tstddev)
|
||||
assert output.shape == (3, 2, 2)
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.poisson = P.Poisson()
|
||||
self.shape = shape
|
||||
|
@ -36,17 +36,16 @@ class Net(nn.Cell):
|
|||
def test_net_1():
|
||||
shape = (2, 16)
|
||||
mean = np.array([5.0]).astype(np.float32)
|
||||
net = Net(shape)
|
||||
net = Net(shape=shape)
|
||||
tmean = Tensor(mean)
|
||||
output = net(tmean)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (2, 16)
|
||||
|
||||
|
||||
def test_net_2():
|
||||
shape = (4, 1)
|
||||
mean = np.array([5.0, 10.0]).astype(np.float32)
|
||||
net = Net(shape)
|
||||
net = Net(shape=shape)
|
||||
tmean = Tensor(mean)
|
||||
output = net(tmean)
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, a, b):
|
||||
C.set_seed(20)
|
||||
return C.uniform(self.shape, a, b, self.seed)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
a = 1.0
|
||||
b = 6.0
|
||||
net = Net(shape, seed)
|
||||
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
|
||||
output = net(ta, tb)
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 1, 2)
|
||||
a = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
b = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
|
||||
output = net(ta, tb)
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
|
@ -24,7 +23,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.uniformint = P.UniformInt(seed=seed)
|
||||
self.shape = shape
|
||||
|
@ -38,10 +37,9 @@ def test_net_1D():
|
|||
shape = (3, 2, 4)
|
||||
a = 1
|
||||
b = 5
|
||||
net = Net(shape, seed)
|
||||
net = Net(shape, seed=seed)
|
||||
ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32)
|
||||
output = net(ta, tb)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
|
|
|
@ -12,36 +12,29 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.uniformreal = P.UniformReal(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, a, b):
|
||||
return self.uniformreal(self.shape, a, b)
|
||||
def construct(self):
|
||||
return self.uniformreal(self.shape)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
def test_net():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
a = 1.0
|
||||
b = 5.0
|
||||
net = Net(shape, seed)
|
||||
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
|
||||
output = net(ta, tb)
|
||||
print(output.asnumpy())
|
||||
net = Net(shape, seed=seed)
|
||||
output = net()
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
|
|
|
@ -43,4 +43,4 @@ def test_net():
|
|||
tx, ty = Tensor(x), Tensor(y)
|
||||
output = mask(tx, ty)
|
||||
print(output.asnumpy())
|
||||
assert ([255, 255, 255, 255] == output.asnumpy()).all()
|
||||
assert ([255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255] == output.asnumpy()).all()
|
||||
|
|
|
@ -0,0 +1,40 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, pad_dim_size):
|
||||
super(Net, self).__init__()
|
||||
self.padding = P.Padding(pad_dim_size)
|
||||
|
||||
def construct(self, x):
|
||||
return self.padding(x)
|
||||
|
||||
|
||||
def test_padding():
|
||||
x = Tensor(np.array([[8], [10]]), mstype.int32)
|
||||
padding = Net(4)
|
||||
out = padding(x)
|
||||
assert(out.asnumpy() == [[8, 0, 0, 0], [10, 0, 0, 0]]).all()
|
|
@ -611,25 +611,14 @@ class PoissonNet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class UniformIntNet(nn.Cell):
|
||||
class UniformNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(UniformIntNet, self).__init__()
|
||||
self.uniformint = P.UniformInt(seed=seed)
|
||||
super(UniformNet, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
|
||||
def construct(self, a, b):
|
||||
out = self.uniformint(self.shape, a, b)
|
||||
return out
|
||||
|
||||
|
||||
class UniformRealNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(UniformRealNet, self).__init__()
|
||||
self.uniformreal = P.UniformReal(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, a, b):
|
||||
out = self.uniformreal(self.shape, a, b)
|
||||
out = C.uniform(self.shape, a, b, self.seed)
|
||||
return out
|
||||
|
||||
|
||||
|
@ -924,13 +913,9 @@ test_case_math_ops = [
|
|||
'block': PoissonNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(2.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('UniformInt', {
|
||||
'block': UniformIntNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(1, mstype.int32), Tensor(15, mstype.int32)],
|
||||
'skip': ['backward']}),
|
||||
('UniformReal', {
|
||||
'block': UniformRealNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(5.0, mstype.float32)],
|
||||
('Uniform', {
|
||||
'block': UniformNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(0.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('RandomChoiceWithMask', {
|
||||
'block': P.RandomChoiceWithMask(256),
|
||||
|
|
Loading…
Reference in New Issue