!8752 Add Poisson distribution

From: @peixu_ren
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2020-11-25 10:03:47 +08:00 committed by Gitee
commit 21b501bb94
4 changed files with 635 additions and 14 deletions

View File

@ -18,27 +18,29 @@ Distributions are the high-level components used to construct the probabilistic
from .distribution import Distribution
from .transformed_distribution import TransformedDistribution
from .normal import Normal
from .bernoulli import Bernoulli
from .exponential import Exponential
from .uniform import Uniform
from .geometric import Geometric
from .categorical import Categorical
from .log_normal import LogNormal
from .logistic import Logistic
from .gumbel import Gumbel
from .cauchy import Cauchy
from .exponential import Exponential
from .geometric import Geometric
from .gumbel import Gumbel
from .logistic import Logistic
from .log_normal import LogNormal
from .normal import Normal
from .poisson import Poisson
from .uniform import Uniform
__all__ = ['Distribution',
'TransformedDistribution',
'Normal',
'Bernoulli',
'Exponential',
'Uniform',
'Categorical',
'Geometric',
'LogNormal',
'Logistic',
'Gumbel',
'Cauchy',
'Exponential',
'Geometric',
'Gumbel',
'Logistic',
'LogNormal',
'Normal',
'Poisson',
'Uniform',
]

View File

@ -0,0 +1,255 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Poisson Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import composite as C
import mindspore.nn as nn
from mindspore._checkparam import Validator
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import check_greater_zero
from ._utils.custom_ops import exp_generic, log_generic
class Poisson(Distribution):
"""
Poisson Distribution.
Args:
rate (float, list, numpy.ndarray, Tensor, Parameter): The rate of the Poisson distribution..
seed (int): The seed used in sampling. The global seed is used if it is None. Default: None.
dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
name (str): The name of the distribution. Default: 'Poisson'.
Note:
`rate` must be strictly greater than 0.
`dist_spec_args` is `rate`.
Examples:
>>> # To initialize an Poisson distribution of the rate 0.5.
>>> import mindspore.nn.probability.distribution as msd
>>> p = msd.Poisson(0.5, dtype=mstype.float32)
>>>
>>> # The following creates two independent Poisson distributions.
>>> p = msd.Poisson([0.5, 0.5], dtype=mstype.float32)
>>>
>>> # An Poisson distribution can be initilized without arguments.
>>> # In this case, `rate` must be passed in through `args` during function calls.
>>> p = msd.Poisson(dtype=mstype.float32)
>>>
>>> # To use an Poisson distribution in a network.
>>> class net(Cell):
... def __init__(self):
... super(net, self).__init__():
... self.p1 = msd.Poisson(0.5, dtype=mstype.float32)
... self.p2 = msd.Poisson(dtype=mstype.float32)
...
... # All the following calls in construct are valid.
... def construct(self, value, rate_b, rate_a):
...
... # Private interfaces of probability functions corresponding to public interfaces, including
... # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, are the same as follows.
... # Args:
... # value (Tensor): the value to be evaluated.
... # rate (Tensor): the rate of the distribution. Default: self.rate.
...
... # Examples of `prob`.
... # Similar calls can be made to other probability functions
... # by replacing `prob` by the name of the function.
... ans = self.p1.prob(value)
... # Evaluate with respect to distribution b.
... ans = self.p1.prob(value, rate_b)
... # `rate` must be passed in during function calls.
... ans = self.p2.prob(value, rate_a)
...
...
... # Functions `mean`, `sd`, and 'var' have the same arguments as follows.
... # Args:
... # rate (Tensor): the rate of the distribution. Default: self.rate.
...
... # Examples of `mean`. `sd`, `var`, and `entropy` are similar.
... ans = self.p1.mean() # return 2
... ans = self.p1.mean(rate_b) # return 1 / rate_b
... # `rate` must be passed in during function calls.
... ans = self.p2.mean(rate_a)
...
...
... # Examples of `sample`.
... # Args:
... # shape (tuple): the shape of the sample. Default: ()
... # probs1 (Tensor): the rate of the distribution. Default: self.rate.
... ans = self.p1.sample()
... ans = self.p1.sample((2,3))
... ans = self.p1.sample((2,3), rate_b)
... ans = self.p2.sample((2,3), rate_a)
"""
def __init__(self,
rate=None,
seed=None,
dtype=mstype.float32,
name="Poisson"):
"""
Constructor of Poisson.
"""
param = dict(locals())
param['param_dict'] = {'rate': rate}
valid_dtype = mstype.int_type + mstype.uint_type + mstype.float_type
Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__)
super(Poisson, self).__init__(seed, dtype, name, param)
self._rate = self._add_parameter(rate, 'rate')
if self.rate is not None:
check_greater_zero(self.rate, 'rate')
# ops needed for the class
self.exp = exp_generic
self.log = log_generic
self.squeeze = P.Squeeze(0)
self.cast = P.Cast()
self.floor = P.Floor()
self.dtypeop = P.DType()
self.shape = P.Shape()
self.fill = P.Fill()
self.less = P.Less()
self.equal = P.Equal()
self.select = P.Select()
self.lgamma = nn.LGamma()
self.igamma = nn.IGamma()
self.poisson = C.poisson
def extend_repr(self):
if self.is_scalar_batch:
s = f'rate = {self.rate}'
else:
s = f'batch_shape = {self._broadcast_shape}'
return s
@property
def rate(self):
"""
Return `rate` of the distribution.
"""
return self._rate
def _get_dist_type(self):
return "Poisson"
def _get_dist_args(self, rate=None):
if rate is not None:
self.checktensor(rate, 'rate')
else:
rate = self.rate
return (rate,)
def _mean(self, rate=None):
r"""
.. math::
MEAN(POISSON) = \lambda.
"""
rate = self._check_param_type(rate)
return rate
def _mode(self, rate=None):
r"""
.. math::
MODE(POISSON) = \lfloor{\lambda}.
"""
rate = self._check_param_type(rate)
return self.floor(rate)
def _var(self, rate=None):
r"""
.. math::
VAR(POISSON) = \lambda.
"""
rate = self._check_param_type(rate)
return rate
def _log_prob(self, value, rate=None):
r"""
Log probability density function of Poisson distributions.
Args:
Args:
value (Tensor): The value to be evaluated.
rate (Tensor): The rate of the distribution. Default: self.rate.
Note:
`value` must be greater or equal to zero.
.. math::
log_pdf(x) = x * \log(\lambda) - \lambda - \log(\Gamma(x)) if x >= 0 else -inf
"""
value = self._check_value(value, "value")
value = self.cast(value, self.dtype)
rate = self._check_param_type(rate)
log_rate = self.log(rate)
zeros = self.fill(self.dtypeop(value), self.shape(value), 0.0)
inf = self.fill(self.dtypeop(value), self.shape(value), np.inf)
safe_x = self.select(self.less(value, zeros), zeros, value)
y = log_rate * safe_x - self.lgamma(safe_x + 1.)
comp = self.equal(value, safe_x)
log_unnormalized_prob = self.select(comp, y, -inf)
log_normalization = self.exp(log_rate)
return log_unnormalized_prob - log_normalization
def _cdf(self, value, rate=None):
r"""
Cumulative distribution function (cdf) of Poisson distributions.
Args:
value (Tensor): The value to be evaluated.
rate (Tensor): The rate of the distribution. Default: self.rate.
Note:
`value` must be greater or equal to zero.
.. math::
cdf(x) = \Gamma(x + 1) if x >= 0 else 0
"""
value = self._check_value(value, 'value')
value = self.cast(value, self.dtype)
rate = self._check_param_type(rate)
zeros = self.fill(self.dtypeop(value), self.shape(value), 0.0)
comp = self.less(value, zeros)
safe_x = self.select(comp, zeros, value)
cdf = 1. - self.igamma(1. + safe_x, rate)
return self.select(comp, zeros, cdf)
def _sample(self, shape=(), rate=None):
"""
Sampling.
Args:
shape (tuple): The shape of the sample. Default: ().
rate (Tensor): The rate of the distribution. Default: self.rate.
Returns:
Tensor, shape is shape + batch_shape.
"""
shape = self.checktuple(shape, 'shape')
rate = self._check_param_type(rate)
origin_shape = shape + self.shape(rate)
if origin_shape == ():
sample_shape = (1,)
else:
sample_shape = origin_shape
sample_poisson = self.poisson(sample_shape, rate, self.seed)
value = self.cast(sample_poisson, self.dtype)
if origin_shape == ():
value = self.squeeze(value)
return value

View File

@ -0,0 +1,210 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for Poisson distribution"""
import numpy as np
from scipy import stats
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Prob(nn.Cell):
"""
Test class: probability of Poisson distribution.
"""
def __init__(self):
super(Prob, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.prob(x_)
def test_pdf():
"""
Test pdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_pdf = poisson_benchmark.pmf([-1.0, 0.0, 1.0]).astype(np.float32)
pdf = Prob()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = pdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
class LogProb(nn.Cell):
"""
Test class: log probability of Poisson distribution.
"""
def __init__(self):
super(LogProb, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.log_prob(x_)
def test_log_likelihood():
"""
Test log_pdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logpdf = poisson_benchmark.logpmf([1.0, 2.0]).astype(np.float32)
logprob = LogProb()
x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32)
output = logprob(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
class Basics(nn.Cell):
"""
Test class: mean/sd/mode of Poisson distribution.
"""
def __init__(self):
super(Basics, self).__init__()
self.p = msd.Poisson([1.44], dtype=dtype.float32)
def construct(self):
return self.p.mean(), self.p.sd(), self.p.mode()
def test_basics():
"""
Test mean/standard/mode deviation.
"""
basics = Basics()
mean, sd, mode = basics()
expect_mean = 1.44
expect_sd = 1.2
expect_mode = 1
tol = 1e-6
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
class Sampling(nn.Cell):
"""
Test class: sample of Poisson distribution.
"""
def __init__(self, shape, seed=0):
super(Sampling, self).__init__()
self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
self.shape = shape
def construct(self, rate=None):
return self.p.sample(self.shape, rate)
def test_sample():
"""
Test sample.
"""
shape = (2, 3)
seed = 10
rate = Tensor([1.0, 2.0, 3.0], dtype=dtype.float32)
sample = Sampling(shape, seed=seed)
output = sample(rate)
assert output.shape == (2, 3, 3)
class CDF(nn.Cell):
"""
Test class: cdf of Poisson distribution.
"""
def __init__(self):
super(CDF, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.cdf(x_)
def test_cdf():
"""
Test cdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_cdf = poisson_benchmark.cdf([-1.0, 0.0, 1.0]).astype(np.float32)
cdf = CDF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = cdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
class LogCDF(nn.Cell):
"""
Test class: log_cdf of Poisson distribution.
"""
def __init__(self):
super(LogCDF, self).__init__()
self.p = msd.Poisson([0.5], dtype=dtype.float32)
def construct(self, x_):
return self.p.log_cdf(x_)
def test_log_cdf():
"""
Test log_cdf.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logcdf = poisson_benchmark.logcdf([0.5, 1.0, 2.5]).astype(np.float32)
logcdf = LogCDF()
x_ = Tensor(np.array([0.5, 1.0, 2.5]).astype(np.float32), dtype=dtype.float32)
output = logcdf(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
class SF(nn.Cell):
"""
Test class: survival function of Poisson distribution.
"""
def __init__(self):
super(SF, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.survival_function(x_)
def test_survival():
"""
Test survival function.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_survival = poisson_benchmark.sf([-1.0, 0.0, 1.0]).astype(np.float32)
survival = SF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = survival(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
class LogSF(nn.Cell):
"""
Test class: log survival function of Poisson distribution.
"""
def __init__(self):
super(LogSF, self).__init__()
self.p = msd.Poisson(0.5, dtype=dtype.float32)
def construct(self, x_):
return self.p.log_survival(x_)
def test_log_survival():
"""
Test log survival function.
"""
poisson_benchmark = stats.poisson(mu=0.5)
expect_logsurvival = poisson_benchmark.logsf([-1.0, 0.0, 1.0]).astype(np.float32)
logsurvival = LogSF()
x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32)
output = logsurvival(x_)
tol = 1e-6
assert (np.abs(output.asnumpy() - expect_logsurvival) < tol).all()

View File

@ -0,0 +1,154 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.Poisson.
"""
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_arguments():
"""
Args passing during initialization.
"""
p = msd.Poisson()
assert isinstance(p, msd.Distribution)
p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
assert isinstance(p, msd.Distribution)
def test_type():
with pytest.raises(TypeError):
msd.Poisson([0.1], dtype=dtype.bool_)
def test_name():
with pytest.raises(TypeError):
msd.Poisson([0.1], name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Poisson([0.1], seed='seed')
def test_rate():
"""
Invalid rate.
"""
with pytest.raises(ValueError):
msd.Poisson([-0.1], dtype=dtype.float32)
with pytest.raises(ValueError):
msd.Poisson([0.0], dtype=dtype.float32)
class PoissonProb(nn.Cell):
"""
Poisson distribution: initialize with rate.
"""
def __init__(self):
super(PoissonProb, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
def construct(self, value):
prob = self.p.prob(value)
log_prob = self.p.log_prob(value)
cdf = self.p.cdf(value)
log_cdf = self.p.log_cdf(value)
sf = self.p.survival_function(value)
log_sf = self.p.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob():
"""
Test probability functions: passing value through construct.
"""
net = PoissonProb()
value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class PoissonProb1(nn.Cell):
"""
Poisson distribution: initialize without rate.
"""
def __init__(self):
super(PoissonProb1, self).__init__()
self.p = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p.prob(value, rate)
log_prob = self.p.log_prob(value, rate)
cdf = self.p.cdf(value, rate)
log_cdf = self.p.log_cdf(value, rate)
sf = self.p.survival_function(value, rate)
log_sf = self.p.log_survival(value, rate)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_poisson_prob1():
"""
Test probability functions: passing value/rate through construct.
"""
net = PoissonProb1()
value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32)
rate = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, rate)
assert isinstance(ans, Tensor)
class PoissonBasics(nn.Cell):
"""
Test class: basic mean/sd/var/mode function.
"""
def __init__(self):
super(PoissonBasics, self).__init__()
self.p = msd.Poisson([2.3, 2.5], dtype=dtype.float32)
def construct(self):
mean = self.p.mean()
sd = self.p.sd()
var = self.p.var()
return mean + sd + var
def test_bascis():
"""
Test mean/sd/var/mode functionality of Poisson distribution.
"""
net = PoissonBasics()
ans = net()
assert isinstance(ans, Tensor)
class PoissonConstruct(nn.Cell):
"""
Poisson distribution: going through construct.
"""
def __init__(self):
super(PoissonConstruct, self).__init__()
self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
self.p1 = msd.Poisson(dtype=dtype.float32)
def construct(self, value, rate):
prob = self.p('prob', value)
prob1 = self.p('prob', value, rate)
prob2 = self.p1('prob', value, rate)
return prob + prob1 + prob2
def test_poisson_construct():
"""
Test probability function going through construct.
"""
net = PoissonConstruct()
value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32)
probs = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32)
ans = net(value, probs)
assert isinstance(ans, Tensor)