forked from mindspore-Ecosystem/mindspore
Develop op MaxPoolWithArgMax
This commit is contained in:
parent
22cc03a54a
commit
1d3bb0b731
|
@ -148,8 +148,6 @@ void TbeAdapter::InputOrderPass(const std::string &op_name, std::vector<std::vec
|
||||||
}
|
}
|
||||||
|
|
||||||
std::map<std::string, FAttrsPass> TbeAdapter::build_json_attr_pass_map_ = {
|
std::map<std::string, FAttrsPass> TbeAdapter::build_json_attr_pass_map_ = {
|
||||||
{"MaxPoolWithArgmax", TbeAdapter::MaxPoolWithArgmaxAttrJsonPass},
|
|
||||||
{"MaxPoolGradWithArgmax", TbeAdapter::MaxPoolGradWithArgmaxAttrJsonPass},
|
|
||||||
{"Conv2D", TbeAdapter::Conv2DAttrJsonPass},
|
{"Conv2D", TbeAdapter::Conv2DAttrJsonPass},
|
||||||
{"Conv2DBackpropFilter", TbeAdapter::Conv2DBackpropFilterAttrJsonPass},
|
{"Conv2DBackpropFilter", TbeAdapter::Conv2DBackpropFilterAttrJsonPass},
|
||||||
{"Conv2DBackpropInput", TbeAdapter::Conv2DBackpropInputAttrJsonPass},
|
{"Conv2DBackpropInput", TbeAdapter::Conv2DBackpropInputAttrJsonPass},
|
||||||
|
@ -170,48 +168,6 @@ bool TbeAdapter::RunAttrPass(const mindspore::AnfNodePtr &anf_node,
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void TbeAdapter::MaxPoolWithArgmaxAttrJsonPass(
|
|
||||||
const mindspore::AnfNodePtr &anf_node, const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
|
|
||||||
nlohmann::json *attrs_json) {
|
|
||||||
MS_EXCEPTION_IF_NULL(anf_node);
|
|
||||||
MS_EXCEPTION_IF_NULL(attrs_json);
|
|
||||||
auto attr_num = op_info_attrs.size();
|
|
||||||
auto primitive = AnfAlgo::GetCNodePrimitive(anf_node);
|
|
||||||
MS_EXCEPTION_IF_NULL(primitive);
|
|
||||||
for (size_t i = 0; i < attr_num; i++) {
|
|
||||||
nlohmann::json attr_obj;
|
|
||||||
MS_EXCEPTION_IF_NULL(op_info_attrs[i]);
|
|
||||||
std::string attr_name = op_info_attrs[i]->name();
|
|
||||||
if (primitive->GetAttr(attr_name) != nullptr) {
|
|
||||||
auto value = primitive->GetAttr(attr_name);
|
|
||||||
if (attr_name == "pad_mode") {
|
|
||||||
std::string attr_value = GetValue<std::string>(value);
|
|
||||||
(void)transform(attr_value.begin(), attr_value.end(), attr_value.begin(), ::toupper);
|
|
||||||
attr_obj["value"] = attr_value;
|
|
||||||
} else {
|
|
||||||
std::vector<int> attr_value;
|
|
||||||
int data = GetValue<int>(value);
|
|
||||||
attr_value.push_back(1);
|
|
||||||
attr_value.push_back(data);
|
|
||||||
attr_value.push_back(data);
|
|
||||||
attr_value.push_back(1);
|
|
||||||
attr_obj["value"] = attr_value;
|
|
||||||
}
|
|
||||||
attr_obj["valid"] = true;
|
|
||||||
} else {
|
|
||||||
attr_obj["valid"] = false;
|
|
||||||
}
|
|
||||||
attr_obj["name"] = attr_name;
|
|
||||||
attrs_json->push_back(attr_obj);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void TbeAdapter::MaxPoolGradWithArgmaxAttrJsonPass(
|
|
||||||
const mindspore::AnfNodePtr &anf_node, const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
|
|
||||||
nlohmann::json *attrs_json) {
|
|
||||||
MaxPoolWithArgmaxAttrJsonPass(anf_node, op_info_attrs, attrs_json);
|
|
||||||
}
|
|
||||||
|
|
||||||
void TbeAdapter::Conv2DAttrJsonPass(const mindspore::AnfNodePtr &anf_node,
|
void TbeAdapter::Conv2DAttrJsonPass(const mindspore::AnfNodePtr &anf_node,
|
||||||
const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
|
const std::vector<std::shared_ptr<mindspore::kernel::OpAttr>> &op_info_attrs,
|
||||||
nlohmann::json *attrs_json) {
|
nlohmann::json *attrs_json) {
|
||||||
|
|
|
@ -161,6 +161,7 @@ const char kNameTopK[] = "TopK";
|
||||||
const char kNameSoftmaxGrad[] = "SoftmaxGrad";
|
const char kNameSoftmaxGrad[] = "SoftmaxGrad";
|
||||||
const char kNameMaxPool[] = "MaxPool";
|
const char kNameMaxPool[] = "MaxPool";
|
||||||
const char kNameAvgPool[] = "AvgPool";
|
const char kNameAvgPool[] = "AvgPool";
|
||||||
|
const char kNameMaxPoolWithArgmax[] = "MaxPoolWithArgmax";
|
||||||
const char kNameBatchNorm[] = "BatchNorm";
|
const char kNameBatchNorm[] = "BatchNorm";
|
||||||
const char kNameBatchNormGrad[] = "BatchNormGrad";
|
const char kNameBatchNormGrad[] = "BatchNormGrad";
|
||||||
const char kNameROIAlign[] = "ROIAlign";
|
const char kNameROIAlign[] = "ROIAlign";
|
||||||
|
@ -199,6 +200,7 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
|
||||||
{string(kNameApplyMomentum), ADPT_DESC(ApplyMomentum)},
|
{string(kNameApplyMomentum), ADPT_DESC(ApplyMomentum)},
|
||||||
{string(kNameMaxPool), ADPT_DESC(MaxPool)},
|
{string(kNameMaxPool), ADPT_DESC(MaxPool)},
|
||||||
{string(kNameAvgPool), ADPT_DESC(AvgPool)},
|
{string(kNameAvgPool), ADPT_DESC(AvgPool)},
|
||||||
|
{string(kNameMaxPoolWithArgmax), ADPT_DESC(MaxPoolWithArgmax)},
|
||||||
{string(kNameTopK), ADPT_DESC(TopK)},
|
{string(kNameTopK), ADPT_DESC(TopK)},
|
||||||
{string(kNamePack), ADPT_DESC(Pack)},
|
{string(kNamePack), ADPT_DESC(Pack)},
|
||||||
{string(kNameSplitD), ADPT_DESC(SplitD)},
|
{string(kNameSplitD), ADPT_DESC(SplitD)},
|
||||||
|
|
|
@ -192,8 +192,7 @@ ATTR_MAP(PRelu) = EMPTY_ATTR_MAP;
|
||||||
OUTPUT_MAP(PRelu) = {{0, OUTPUT_DESC(y)}};
|
OUTPUT_MAP(PRelu) = {{0, OUTPUT_DESC(y)}};
|
||||||
|
|
||||||
// PReluGrad
|
// PReluGrad
|
||||||
INPUT_MAP(PReluGrad) = {
|
INPUT_MAP(PReluGrad) = {{1, INPUT_DESC(grads)}, {2, INPUT_DESC(features)}, {3, INPUT_DESC(weights)}};
|
||||||
{1, INPUT_DESC(grads)}, {2, INPUT_DESC(features)}, {3, INPUT_DESC(weights)}};
|
|
||||||
ATTR_MAP(PReluGrad) = EMPTY_ATTR_MAP;
|
ATTR_MAP(PReluGrad) = EMPTY_ATTR_MAP;
|
||||||
OUTPUT_MAP(PReluGrad) = {{0, OUTPUT_DESC(dx)}, {1, OUTPUT_DESC(da)}};
|
OUTPUT_MAP(PReluGrad) = {{0, OUTPUT_DESC(dx)}, {1, OUTPUT_DESC(da)}};
|
||||||
|
|
||||||
|
@ -702,24 +701,30 @@ ATTR_MAP(AvgPoolGrad) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<
|
||||||
OUTPUT_MAP(AvgPoolGrad) = {{0, OUTPUT_DESC(out_grad)}};
|
OUTPUT_MAP(AvgPoolGrad) = {{0, OUTPUT_DESC(out_grad)}};
|
||||||
|
|
||||||
// MaxPoolWithArgmax
|
// MaxPoolWithArgmax
|
||||||
|
INPUT_MAP(MaxPoolWithArgmax) = {{1, INPUT_DESC(x)}};
|
||||||
|
ATTR_MAP(MaxPoolWithArgmax) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||||
|
{"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||||
|
{"padding", ATTR_DESC(padding, AnyTraits<std::string>())}};
|
||||||
|
OUTPUT_MAP(MaxPoolWithArgmax) = {{0, OUTPUT_DESC(y)}, {1, OUTPUT_DESC(argmax)}};
|
||||||
|
|
||||||
|
// MaxPoolGradWithArgmax
|
||||||
INPUT_MAP(MaxPoolGradWithArgmax) = {
|
INPUT_MAP(MaxPoolGradWithArgmax) = {
|
||||||
{1, INPUT_DESC(x)},
|
{1, INPUT_DESC(x)},
|
||||||
{2, INPUT_DESC(argmax)},
|
{2, INPUT_DESC(grad)},
|
||||||
{3, INPUT_DESC(grad)},
|
{3, INPUT_DESC(argmax)},
|
||||||
};
|
};
|
||||||
ATTR_MAP(MaxPoolGradWithArgmax) = {{"pad_mode", ATTR_DESC(padding, AnyTraits<std::string>())},
|
ATTR_MAP(MaxPoolGradWithArgmax) = {{"ksize", ATTR_DESC(ksize, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||||
{"window", ATTR_DESC(ksize, "window", AnyTraits<std::vector<int64_t>>())},
|
{"strides", ATTR_DESC(strides, AnyTraits<int>(), AnyTraits<std::vector<int64_t>>())},
|
||||||
{"stride", ATTR_DESC(strides, "stride", AnyTraits<std::vector<int64_t>>())}};
|
{"padding", ATTR_DESC(padding, AnyTraits<std::string>())}};
|
||||||
|
OUTPUT_MAP(MaxPoolGradWithArgmax) = {{0, OUTPUT_DESC(y)}};
|
||||||
|
|
||||||
// Conv2D
|
// Conv2D
|
||||||
INPUT_MAP(Conv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
|
INPUT_MAP(Conv2D) = {{1, INPUT_DESC(x)}, {2, INPUT_DESC(filter)}};
|
||||||
ATTR_MAP(Conv2D) = {
|
ATTR_MAP(Conv2D) = {{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
|
||||||
{"pad_list", ATTR_DESC(pads, AnyTraits<std::vector<int64_t>>(), AnyTraits<std::vector<int64_t>>())},
|
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
||||||
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
{"group", ATTR_DESC(groups, AnyTraits<int>())}};
|
||||||
{"group", ATTR_DESC(groups, AnyTraits<int>())}
|
|
||||||
};
|
|
||||||
OUTPUT_MAP(Conv2D) = {{0, OUTPUT_DESC(y)}};
|
OUTPUT_MAP(Conv2D) = {{0, OUTPUT_DESC(y)}};
|
||||||
|
|
||||||
// Conv2DBackpropInputD
|
// Conv2DBackpropInputD
|
||||||
|
@ -731,8 +736,7 @@ ATTR_MAP(Conv2DBackpropInputD) = {
|
||||||
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
||||||
{"group", ATTR_DESC(groups, AnyTraits<int>())}
|
{"group", ATTR_DESC(groups, AnyTraits<int>())}};
|
||||||
};
|
|
||||||
OUTPUT_MAP(Conv2DBackpropInputD) = {{0, OUTPUT_DESC(y)}};
|
OUTPUT_MAP(Conv2DBackpropInputD) = {{0, OUTPUT_DESC(y)}};
|
||||||
|
|
||||||
// Conv2DBackpropFilterD
|
// Conv2DBackpropFilterD
|
||||||
|
@ -744,8 +748,7 @@ ATTR_MAP(Conv2DBackpropFilterD) = {
|
||||||
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"stride", ATTR_DESC(strides, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
{"dilation", ATTR_DESC(dilations, "pad", AnyTraits<std::vector<int64_t>>())},
|
||||||
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
{"data_format", ATTR_DESC(data_format, AnyTraits<std::string>())},
|
||||||
{"group", ATTR_DESC(groups, AnyTraits<int>())}
|
{"group", ATTR_DESC(groups, AnyTraits<int>())}};
|
||||||
};
|
|
||||||
OUTPUT_MAP(Conv2DBackpropFilterD) = {{0, OUTPUT_DESC(y)}};
|
OUTPUT_MAP(Conv2DBackpropFilterD) = {{0, OUTPUT_DESC(y)}};
|
||||||
|
|
||||||
// DepthwiseConv2D
|
// DepthwiseConv2D
|
||||||
|
|
|
@ -88,8 +88,10 @@ DECLARE_OP_ADAPTER(FusedBatchNormGrad)
|
||||||
DECLARE_OP_USE_OUTPUT(FusedBatchNormGrad)
|
DECLARE_OP_USE_OUTPUT(FusedBatchNormGrad)
|
||||||
DECLARE_OP_ADAPTER(BiasAddGrad)
|
DECLARE_OP_ADAPTER(BiasAddGrad)
|
||||||
DECLARE_OP_USE_OUTPUT(BiasAddGrad)
|
DECLARE_OP_USE_OUTPUT(BiasAddGrad)
|
||||||
|
DECLARE_OP_ADAPTER(MaxPoolWithArgmax)
|
||||||
|
DECLARE_OP_USE_OUTPUT(MaxPoolWithArgmax)
|
||||||
DECLARE_OP_ADAPTER(MaxPoolGradWithArgmax)
|
DECLARE_OP_ADAPTER(MaxPoolGradWithArgmax)
|
||||||
DECLARE_OP_USE_ENUM(MaxPoolGradWithArgmax)
|
DECLARE_OP_USE_OUTPUT(MaxPoolGradWithArgmax)
|
||||||
DECLARE_OP_ADAPTER(Conv2D)
|
DECLARE_OP_ADAPTER(Conv2D)
|
||||||
DECLARE_OP_USE_ENUM(Conv2D)
|
DECLARE_OP_USE_ENUM(Conv2D)
|
||||||
DECLARE_OP_USE_OUTPUT(Conv2D)
|
DECLARE_OP_USE_OUTPUT(Conv2D)
|
||||||
|
|
|
@ -168,7 +168,7 @@ class ResNet(nn.Cell):
|
||||||
self.conv1 = _conv7x7(3, 64, stride=2)
|
self.conv1 = _conv7x7(3, 64, stride=2)
|
||||||
self.bn1 = _bn(64)
|
self.bn1 = _bn(64)
|
||||||
self.relu = P.ReLU()
|
self.relu = P.ReLU()
|
||||||
self.maxpool = P.MaxPoolWithArgmax(pad_mode='same', window=3, stride=2)
|
self.maxpool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
|
|
||||||
self.layer1 = self._make_layer(block,
|
self.layer1 = self._make_layer(block,
|
||||||
layer_nums[0],
|
layer_nums[0],
|
||||||
|
|
|
@ -13,33 +13,49 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""pooling"""
|
"""pooling"""
|
||||||
|
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore._checkparam import ParamValidator as validator
|
from mindspore._checkparam import ParamValidator as validator
|
||||||
from mindspore._checkparam import Rel
|
from mindspore._checkparam import Rel
|
||||||
|
from ... import context
|
||||||
from ..cell import Cell
|
from ..cell import Cell
|
||||||
|
|
||||||
|
|
||||||
class _PoolNd(Cell):
|
class _PoolNd(Cell):
|
||||||
"""N-D AvgPool"""
|
"""N-D AvgPool"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self, kernel_size, stride, pad_mode):
|
||||||
kernel_size,
|
name = self.__class__.__name__
|
||||||
stride,
|
|
||||||
pad_mode,
|
|
||||||
padding=0,
|
|
||||||
pool=None):
|
|
||||||
super(_PoolNd, self).__init__()
|
super(_PoolNd, self).__init__()
|
||||||
self.kernel_size = kernel_size
|
validator.check_type('kernel_size', kernel_size, [int, tuple])
|
||||||
self.stride = stride
|
validator.check_type('stride', stride, [int, tuple])
|
||||||
self.pad_mode = pad_mode
|
self.pad_mode = validator.check_string('pad_mode', pad_mode.upper(), ['VALID', 'SAME'])
|
||||||
self.padding = validator.check_integer('padding', padding, 0, Rel.GE)
|
|
||||||
self.pool = pool
|
|
||||||
if self.pool is None:
|
|
||||||
raise NotImplementedError
|
|
||||||
|
|
||||||
def construct(self, x):
|
if isinstance(kernel_size, int):
|
||||||
return self.pool(x)
|
validator.check_integer("kernel_size", kernel_size, 1, Rel.GE)
|
||||||
|
else:
|
||||||
|
if (len(kernel_size) != 2 or
|
||||||
|
(not isinstance(kernel_size[0], int)) or
|
||||||
|
(not isinstance(kernel_size[1], int)) or
|
||||||
|
kernel_size[0] <= 0 or
|
||||||
|
kernel_size[1] <= 0):
|
||||||
|
raise ValueError(f'The kernel_size passed to cell {name} should be an positive int number or'
|
||||||
|
f'a tuple of two positive int numbers, but got {kernel_size}')
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
|
||||||
|
if isinstance(stride, int):
|
||||||
|
validator.check_integer("stride", stride, 1, Rel.GE)
|
||||||
|
else:
|
||||||
|
if (len(stride) != 2 or
|
||||||
|
(not isinstance(stride[0], int)) or
|
||||||
|
(not isinstance(stride[1], int)) or
|
||||||
|
stride[0] <= 0 or
|
||||||
|
stride[1] <= 0):
|
||||||
|
raise ValueError(f'The stride passed to cell {name} should be an positive int number or'
|
||||||
|
f'a tuple of two positive int numbers, but got {stride}')
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
pass
|
||||||
|
|
||||||
def extend_repr(self):
|
def extend_repr(self):
|
||||||
return 'kernel_size={kernel_size}, stride={stride}, pad_mode={pad_mode}'.format(**self.__dict__)
|
return 'kernel_size={kernel_size}, stride={stride}, pad_mode={pad_mode}'.format(**self.__dict__)
|
||||||
|
@ -63,19 +79,23 @@ class MaxPool2d(_PoolNd):
|
||||||
pad_mode for training only supports "same" and "valid".
|
pad_mode for training only supports "same" and "valid".
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
kernel_size (int): Size of the window to take a max over. Default 1.
|
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the max value,
|
||||||
stride (int): Stride size of the window. Default: 1.
|
is an int number that represents height and width are both kernel_size,
|
||||||
pad_mode (str): Select the mode of the pad. The optional values are
|
or a tuple of two int numbers that represent height and width respectively.
|
||||||
"same" and "valid". Default: "valid".
|
Default: 1.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively. Default: 1.
|
||||||
|
pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
|
|
||||||
- same: Adopts the way of completion. Output height and width will be the same as
|
- same: Adopts the way of completion. Output height and width will be the same as
|
||||||
the input. Total number of padding will be calculated for horizontal and vertical
|
the input. Total number of padding will be calculated for horizontal and vertical
|
||||||
direction and evenly distributed to top and bottom, left and right if possible. Otherwise, the
|
direction and evenly distributed to top and bottom, left and right if possible.
|
||||||
last extra padding will be done from the bottom and the right side.
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||||
|
|
||||||
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
||||||
without padding. Extra pixels will be discarded.
|
will be return without padding. Extra pixels will be discarded.
|
||||||
padding (int): Implicit zero padding to be added on both sides. Default: 0.
|
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||||
|
@ -103,31 +123,22 @@ class MaxPool2d(_PoolNd):
|
||||||
[[7. 8.]
|
[[7. 8.]
|
||||||
[8. 8.]]]]
|
[8. 8.]]]]
|
||||||
"""
|
"""
|
||||||
def __init__(self,
|
|
||||||
kernel_size=1,
|
|
||||||
stride=1,
|
|
||||||
pad_mode="VALID",
|
|
||||||
padding=0):
|
|
||||||
max_pool = P.MaxPool(ksize=kernel_size,
|
|
||||||
strides=stride,
|
|
||||||
padding=pad_mode)
|
|
||||||
self.is_autodiff_backend = False
|
|
||||||
if self.is_autodiff_backend:
|
|
||||||
|
|
||||||
# At present, pad mode of max pool is not unified, so it is a temporarily avoided
|
def __init__(self, kernel_size=1, stride=1, pad_mode="valid"):
|
||||||
pad_mode = validator.check_string('pad_mode', pad_mode.lower(), ['valid', 'same'])
|
super(MaxPool2d, self).__init__(kernel_size, stride, pad_mode)
|
||||||
|
self.max_pool = P.MaxPool(ksize=self.kernel_size,
|
||||||
max_pool = P.MaxPoolWithArgmax(window=kernel_size,
|
strides=self.stride,
|
||||||
stride=stride,
|
padding=self.pad_mode)
|
||||||
pad_mode=pad_mode,
|
self.max_pool_with_arg_max = P.MaxPoolWithArgmax(ksize=self.kernel_size,
|
||||||
pad=padding)
|
strides=self.stride,
|
||||||
super(MaxPool2d, self).__init__(kernel_size, stride, pad_mode, padding, max_pool)
|
padding=self.pad_mode)
|
||||||
|
self.is_tbe = context.get_context("device_target") == "Ascend"
|
||||||
|
|
||||||
def construct(self, x):
|
def construct(self, x):
|
||||||
if self.is_autodiff_backend:
|
if self.is_tbe and self.training:
|
||||||
out = self.pool(x)[0]
|
out = self.max_pool_with_arg_max(x)[0]
|
||||||
else:
|
else:
|
||||||
out = self.pool(x)
|
out = self.max_pool(x)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
@ -149,19 +160,24 @@ class AvgPool2d(_PoolNd):
|
||||||
pad_mode for training only supports "same" and "valid".
|
pad_mode for training only supports "same" and "valid".
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
kernel_size (int): Size of the window to take a max over. Default: 1.
|
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
|
||||||
stride (int): Stride size of the window. Default: 1.
|
is an int number that represents height and width are both kernel_size,
|
||||||
pad_mode (str): Select the mode of the pad. The optional values are
|
or a tuple of two int numbers that represent height and width respectively.
|
||||||
"same", "valid". Default: "valid".
|
Default: 1.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively. Default: 1.
|
||||||
|
pad_mode (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
|
|
||||||
- same: Adopts the way of completion. Output height and width will be the same as
|
- same: Adopts the way of completion. Output height and width will be the same as
|
||||||
the input. Total number of padding will be calculated for horizontal and vertical
|
the input. Total number of padding will be calculated for horizontal and vertical
|
||||||
direction and evenly distributed to top and bottom, left and right if possible. Otherwise, the
|
direction and evenly distributed to top and bottom, left and right if possible.
|
||||||
last extra padding will be done from the bottom and the right side.
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
||||||
|
will be return without padding. Extra pixels will be discarded.
|
||||||
|
|
||||||
- valid: Adopts the way of discarding. The possibly largest height and width of output will be return
|
|
||||||
without padding. Extra pixels will be discarded.
|
|
||||||
padding (int): Implicit zero padding to be added on both sides. Default: 0.
|
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||||
|
@ -170,7 +186,7 @@ class AvgPool2d(_PoolNd):
|
||||||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> pool = AvgPool2d(kernel_size=3, stride=1)
|
>>> pool = AvgPool2d(kernel_size=3, strides=1)
|
||||||
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
>>> x = Tensor(np.random.randint(0, 10, [1, 2, 4, 4]), mindspore.float32)
|
||||||
[[[[5. 5. 9. 9.]
|
[[[[5. 5. 9. 9.]
|
||||||
[8. 4. 3. 0.]
|
[8. 4. 3. 0.]
|
||||||
|
@ -189,12 +205,15 @@ class AvgPool2d(_PoolNd):
|
||||||
[[4.2222223 4.5555553]
|
[[4.2222223 4.5555553]
|
||||||
[3.2222223 4.5555553]]]]
|
[3.2222223 4.5555553]]]]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
pad_mode="VALID",
|
pad_mode="valid"):
|
||||||
padding=0):
|
super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode)
|
||||||
avg_pool = P.AvgPool(ksize=kernel_size,
|
self.avg_pool = P.AvgPool(ksize=self.kernel_size,
|
||||||
strides=stride,
|
strides=self.stride,
|
||||||
padding=pad_mode)
|
padding=self.pad_mode)
|
||||||
super(AvgPool2d, self).__init__(kernel_size, stride, pad_mode, padding, avg_pool)
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.avg_pool(x)
|
||||||
|
|
|
@ -76,14 +76,9 @@ def get_bprop_depthwise_conv2d_native(self):
|
||||||
def get_bprop_max_pool_with_argmax(self):
|
def get_bprop_max_pool_with_argmax(self):
|
||||||
"""Grad definition for `MaxPoolWithArgmax` operation."""
|
"""Grad definition for `MaxPoolWithArgmax` operation."""
|
||||||
maxpool_grad = G.MaxPoolGradWithArgmax(
|
maxpool_grad = G.MaxPoolGradWithArgmax(
|
||||||
pad_mode=self.pad_mode,
|
ksize=self.ksize,
|
||||||
window=self.window,
|
strides=self.strides,
|
||||||
pad=self.pad,
|
padding=self.padding,)
|
||||||
stride=self.stride,
|
|
||||||
data_mode=self.data_mode,
|
|
||||||
ceil_mode=self.ceil_mode,
|
|
||||||
alpha=self.alpha,
|
|
||||||
beta=self.beta)
|
|
||||||
|
|
||||||
def bprop(x, out, dout):
|
def bprop(x, out, dout):
|
||||||
dx = maxpool_grad(x, dout[0], out[1])
|
dx = maxpool_grad(x, dout[0], out[1])
|
||||||
|
|
|
@ -28,19 +28,19 @@ from mindspore.ops.op_info_register import op_info_register
|
||||||
"partial_flag": true,
|
"partial_flag": true,
|
||||||
"attr": [
|
"attr": [
|
||||||
{
|
{
|
||||||
"name": "window",
|
"name": "ksize",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "listInt",
|
"type": "listInt",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stride",
|
"name": "strides",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "listInt",
|
"type": "listInt",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "pad_mode",
|
"name": "padding",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "str",
|
"type": "str",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
|
|
|
@ -28,19 +28,19 @@ from mindspore.ops.op_info_register import op_info_register
|
||||||
"partial_flag": true,
|
"partial_flag": true,
|
||||||
"attr": [
|
"attr": [
|
||||||
{
|
{
|
||||||
"name": "window",
|
"name": "ksize",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "listInt",
|
"type": "listInt",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "stride",
|
"name": "strides",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "listInt",
|
"type": "listInt",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "pad_mode",
|
"name": "padding",
|
||||||
"param_type": "required",
|
"param_type": "required",
|
||||||
"type": "str",
|
"type": "str",
|
||||||
"value": "all"
|
"value": "all"
|
||||||
|
|
|
@ -15,7 +15,6 @@
|
||||||
|
|
||||||
"""Operators for gradients."""
|
"""Operators for gradients."""
|
||||||
|
|
||||||
import math
|
|
||||||
from ..._c_expression import signature_rw as sig_rw
|
from ..._c_expression import signature_rw as sig_rw
|
||||||
from ..._c_expression import signature_kind as sig_kind
|
from ..._c_expression import signature_kind as sig_kind
|
||||||
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
||||||
|
@ -340,59 +339,60 @@ class _PoolGrad(PrimitiveWithInfer):
|
||||||
"""Gradients of the max/avg pool operation."""
|
"""Gradients of the max/avg pool operation."""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, ksize=1, strides=1, padding="VALID"):
|
def __init__(self, ksize, strides, padding="VALID"):
|
||||||
self.init_prim_io_names(inputs=['x_origin', 'out_origin', 'grad'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x_origin', 'out_origin', 'grad'], outputs=['output'])
|
||||||
self.ksize = ksize
|
|
||||||
self.strides = strides
|
|
||||||
self.padding = padding
|
|
||||||
|
|
||||||
self.ksize = validator.check_type('ksize', self.ksize, [int, tuple])
|
validator.check_type('ksize', ksize, [int, tuple])
|
||||||
self.strides = validator.check_type('strides', self.strides, [int, tuple])
|
validator.check_type('strides', strides, [int, tuple])
|
||||||
|
self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'])
|
||||||
validator.check_type('padding', self.padding, [str])
|
|
||||||
self.padding = validator.check_string('padding', self.padding, ['VALID', 'SAME'])
|
|
||||||
self.add_prim_attr("padding", self.padding)
|
self.add_prim_attr("padding", self.padding)
|
||||||
self.add_prim_attr('data_format', "NCHW")
|
self.is_maxpoolgradwithargmax = (self.name == "MaxPoolGradWithArgmax")
|
||||||
|
if not self.is_maxpoolgradwithargmax:
|
||||||
|
self.add_prim_attr('data_format', "NCHW")
|
||||||
|
|
||||||
if isinstance(self.ksize, int):
|
if isinstance(ksize, int):
|
||||||
self.pool_h = validator.check_integer("ksize", self.ksize, 1, Rel.GE)
|
validator.check_integer("ksize", ksize, 1, Rel.GE)
|
||||||
self.pool_w = self.pool_h
|
if self.is_maxpoolgradwithargmax:
|
||||||
self.add_prim_attr("ksize", (1, 1, self.ksize, self.ksize))
|
self.ksize = (1, ksize, ksize, 1)
|
||||||
elif isinstance(self.ksize, tuple):
|
else:
|
||||||
if (len(self.ksize) != 2 and len(self.ksize) != 4):
|
self.ksize = (1, 1, ksize, ksize)
|
||||||
raise ValueError('Attr \'ksize\' of \'Pool\' Op passed ' +
|
|
||||||
str(self.ksize)+', should be a int or a tuple of length 2 or 4.')
|
|
||||||
for ksize_val in self.ksize:
|
|
||||||
if (not isinstance(ksize_val, int)) or (ksize_val <= 0):
|
|
||||||
raise ValueError('Each value of attr \'ksize\' of \'MaxPool\' Op passed ' +
|
|
||||||
str(self.ksize)+', should be int and greater than 0.')
|
|
||||||
self.pool_h = self.ksize[-2]
|
|
||||||
self.pool_w = self.ksize[-1]
|
|
||||||
self.add_prim_attr("ksize", (1, 1, self.ksize[-2], self.ksize[-1]))
|
|
||||||
|
|
||||||
if isinstance(self.strides, int):
|
|
||||||
self.stride_h = validator.check_integer("strides", self.strides, 1, Rel.GE)
|
|
||||||
self.stride_w = self.stride_h
|
|
||||||
self.add_prim_attr("strides", (1, 1, self.strides, self.strides))
|
|
||||||
elif isinstance(self.strides, tuple):
|
|
||||||
if (len(self.strides) != 2 and len(self.strides) != 4):
|
|
||||||
raise ValueError('Attr \'strides\' of \'MaxPool\' Op passed ' +
|
|
||||||
str(self.strides)+', should be a int or a tuple of length 2 or 4.')
|
|
||||||
for stride_val in self.strides:
|
|
||||||
if (not isinstance(stride_val, int)) or (stride_val <= 0):
|
|
||||||
raise ValueError('Each value of attr \'strides\' of \'MaxPool\' Op passed ' +
|
|
||||||
str(self.strides)+', should be int and greater than 0.')
|
|
||||||
self.stride_h = self.strides[-2]
|
|
||||||
self.stride_w = self.strides[-1]
|
|
||||||
self.add_prim_attr("strides", (1, 1, self.strides[-2], self.strides[-1]))
|
|
||||||
|
|
||||||
if self.padding == "VALID":
|
|
||||||
self.pad = 0
|
|
||||||
elif self.padding == "SAME":
|
|
||||||
self.pad = math.floor((self.pool_h - 1) / 2)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError('The padding should be str and must be SAME or VALID,'
|
ksize_error = ValueError(f"The 'ksize' passed to operator {self.name} should be an positive int number"
|
||||||
' but got {}.'.format(self.padding))
|
f"or a tuple of two or four positive int numbers, but got {ksize}")
|
||||||
|
if len(ksize) != 2 and len(ksize) != 4:
|
||||||
|
raise ksize_error
|
||||||
|
for ksize_val in ksize:
|
||||||
|
if not isinstance(ksize_val, int) or (ksize_val <= 0):
|
||||||
|
raise ksize_error
|
||||||
|
if len(ksize) == 2 and self.is_maxpoolgradwithargmax:
|
||||||
|
self.ksize = (1, ksize[0], ksize[1], 1)
|
||||||
|
elif len(ksize) == 2 and not self.is_maxpoolgradwithargmax:
|
||||||
|
self.ksize = (1, 1, ksize[0], ksize[1])
|
||||||
|
else:
|
||||||
|
self.ksize = ksize
|
||||||
|
self.add_prim_attr("ksize", self.ksize)
|
||||||
|
|
||||||
|
if isinstance(strides, int):
|
||||||
|
validator.check_integer("strides", strides, 1, Rel.GE)
|
||||||
|
if self.is_maxpoolgradwithargmax:
|
||||||
|
self.strides = (1, strides, strides, 1)
|
||||||
|
else:
|
||||||
|
self.strides = (1, 1, strides, strides)
|
||||||
|
else:
|
||||||
|
strides_error = ValueError(f"The 'strides' passed to operator {self.name} should be an positive int number"
|
||||||
|
f"or a tuple of two or four positive int numbers, but got {strides}")
|
||||||
|
if len(strides) != 2 and len(strides) != 4:
|
||||||
|
raise strides_error
|
||||||
|
for strides_val in strides:
|
||||||
|
if not isinstance(strides_val, int) or (strides_val <= 0):
|
||||||
|
raise strides_error
|
||||||
|
if len(strides) == 2 and self.is_maxpoolgradwithargmax:
|
||||||
|
self.strides = (1, strides[0], strides[1], 1)
|
||||||
|
elif len(strides) == 2 and not self.is_maxpoolgradwithargmax:
|
||||||
|
self.strides = (1, 1, strides[0], strides[1])
|
||||||
|
else:
|
||||||
|
self.strides = strides
|
||||||
|
self.add_prim_attr("strides", self.strides)
|
||||||
|
|
||||||
|
|
||||||
class AvgPoolGrad(_PoolGrad):
|
class AvgPoolGrad(_PoolGrad):
|
||||||
|
@ -451,28 +451,13 @@ class MaximumGrad(Primitive):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class MaxPoolGradWithArgmax(PrimitiveWithInfer):
|
class MaxPoolGradWithArgmax(_PoolGrad):
|
||||||
"""Computes the gradients of MaxPoolWithArgmax."""
|
"""Computes the gradients of MaxPoolWithArgmax."""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self,
|
def __init__(self, ksize=1, strides=1, padding="VALID",):
|
||||||
pad_mode="valid",
|
|
||||||
window=0,
|
|
||||||
pad=0,
|
|
||||||
stride=1,
|
|
||||||
data_mode=1,
|
|
||||||
ceil_mode=0,
|
|
||||||
alpha=1.0,
|
|
||||||
beta=0.0):
|
|
||||||
self.init_prim_io_names(inputs=['x', 'grad', 'argmax'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x', 'grad', 'argmax'], outputs=['output'])
|
||||||
|
super(MaxPoolGradWithArgmax, self).__init__(ksize, strides, padding)
|
||||||
self.window = window
|
|
||||||
self.pool_h = self.pool_w = window
|
|
||||||
self.pad = pad
|
|
||||||
self.pad_mode = pad_mode
|
|
||||||
self.stride = stride
|
|
||||||
self.data_mode = data_mode
|
|
||||||
self.ceil_mode = ceil_mode
|
|
||||||
|
|
||||||
def infer_shape(self, x_shape, grad_shape, argmax_shape):
|
def infer_shape(self, x_shape, grad_shape, argmax_shape):
|
||||||
if not grad_shape:
|
if not grad_shape:
|
||||||
|
|
|
@ -682,186 +682,83 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
||||||
return x_dtype
|
return x_dtype
|
||||||
|
|
||||||
|
|
||||||
class MaxPoolWithArgmax(PrimitiveWithInfer):
|
|
||||||
r"""
|
|
||||||
Performs max pooling on the input Tensor and return both max values and indices.
|
|
||||||
|
|
||||||
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
|
|
||||||
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
|
|
||||||
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
|
|
||||||
|
|
||||||
.. math::
|
|
||||||
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
|
|
||||||
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
|
||||||
|
|
||||||
Args:
|
|
||||||
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
|
|
||||||
window (Union[int, tuple[int]]): The size of window, which is the kernel size, two `int` for width
|
|
||||||
and height. Default: 1.
|
|
||||||
pad (Union[int, tuple[int]]): If `pad_mode` is `pad`, the pad value to fill, two `int` for width
|
|
||||||
and height. Default: 0.
|
|
||||||
stride (Union[int, tuple[int]]): The stride of the window, that should be a tuple of two `int` for
|
|
||||||
width and height. Default: 1.
|
|
||||||
|
|
||||||
Inputs:
|
|
||||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
|
||||||
|
|
||||||
Outputs:
|
|
||||||
Tuple of 2 Tensor, the maxpool result and where max values from.
|
|
||||||
|
|
||||||
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
|
||||||
- **mask** (Tensor) - Max values' index represented by the mask.
|
|
||||||
"""
|
|
||||||
|
|
||||||
@prim_attr_register
|
|
||||||
def __init__(self,
|
|
||||||
pad_mode="valid",
|
|
||||||
window=1,
|
|
||||||
pad=0,
|
|
||||||
stride=1,
|
|
||||||
data_mode=1,
|
|
||||||
ceil_mode=0,
|
|
||||||
alpha=1.0,
|
|
||||||
beta=0.0):
|
|
||||||
self.init_prim_io_names(inputs=['x'], outputs=['output', 'argmax'])
|
|
||||||
self.window = validator.check_type('window', window, [int, tuple])
|
|
||||||
if isinstance(window, int) and window <= 0:
|
|
||||||
raise ValueError('Attr \'window\' of \'MaxPoolWithArgmax\' Op passed '
|
|
||||||
+ str(self.window)+', should be a int or tuple and greater than 0.')
|
|
||||||
if isinstance(window, tuple) and (len(window) != 2 or
|
|
||||||
(not isinstance(window[0], int)) or
|
|
||||||
(not isinstance(window[1], int)) or
|
|
||||||
window[0] <= 0 or window[1] <= 0):
|
|
||||||
raise ValueError('Attr \'window\' of \'MaxPoolWithArgmax\' Op passed '
|
|
||||||
+ str(self.window)+', should be a int or tuple and greater than 0.')
|
|
||||||
self.pool_h = self.pool_w = window
|
|
||||||
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'])
|
|
||||||
if self.pad_mode == "valid":
|
|
||||||
self.pad = 0
|
|
||||||
elif self.pad_mode == "same":
|
|
||||||
self.pad = math.floor((self.window - 1) / 2)
|
|
||||||
elif self.pad_mode == "pad":
|
|
||||||
self.pad = validator.check_integer('pad', pad, 0, Rel.GE)
|
|
||||||
|
|
||||||
self.data_mode = validator.check_integer('data_mode', data_mode, 1, Rel.EQ)
|
|
||||||
self.ceil_mode = validator.check_integer('ceil_mode', ceil_mode, 0, Rel.EQ)
|
|
||||||
self.stride = validator.check_integer('stride', stride, 1, Rel.GE)
|
|
||||||
self.alpha = validator.check_type('alpha', alpha, [int, float])
|
|
||||||
self.beta = validator.check_type('beta', beta, [int, float])
|
|
||||||
self.is_tbe = not context.get_context("enable_ge") and context.get_context("device_target") == "Ascend"
|
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
|
||||||
validator.check_integer("x_shape", len(x_shape), 4, Rel.EQ)
|
|
||||||
pad = self.pad
|
|
||||||
h_input = x_shape[2]
|
|
||||||
w_input = x_shape[3]
|
|
||||||
h_out = (h_input + 2 * pad - (self.window - 1) - 1) / self.stride + 1
|
|
||||||
h_out = math.floor(h_out)
|
|
||||||
w_out = (w_input + 2 * pad - (self.window - 1) - 1) / self.stride + 1
|
|
||||||
w_out = math.floor(w_out)
|
|
||||||
out_shape = [x_shape[0], x_shape[1], h_out, w_out]
|
|
||||||
for shape_value in out_shape:
|
|
||||||
if shape_value <= 0:
|
|
||||||
raise ValueError("The kernel size is not valid please check it if is larger than data's shape size.")
|
|
||||||
k_size_vec = [1, self.window, self.window, 1]
|
|
||||||
argmax_shape = []
|
|
||||||
if self.is_tbe:
|
|
||||||
for i in range(4):
|
|
||||||
if i == 2:
|
|
||||||
dim = k_size_vec[i - 1] * k_size_vec[i]
|
|
||||||
argmax_shape.append(dim)
|
|
||||||
elif i == 3:
|
|
||||||
dim = math.ceil(out_shape[i - 1] * out_shape[i] / 16) + 1
|
|
||||||
argmax_shape.append(dim)
|
|
||||||
else:
|
|
||||||
argmax_shape.append(x_shape[i])
|
|
||||||
else:
|
|
||||||
argmax_shape = out_shape
|
|
||||||
return out_shape, argmax_shape
|
|
||||||
|
|
||||||
def infer_dtype(self, x_dtype):
|
|
||||||
out_dtype = x_dtype
|
|
||||||
validator.check_typename("x_type", x_dtype, (mstype.float16, mstype.float32))
|
|
||||||
argmax_dtype = mstype.int32
|
|
||||||
return out_dtype, argmax_dtype
|
|
||||||
|
|
||||||
|
|
||||||
class _Pool(PrimitiveWithInfer):
|
class _Pool(PrimitiveWithInfer):
|
||||||
r"""
|
r"""
|
||||||
Performs max/avg pooling operation.
|
Performs max/avg pooling operation.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ksize (Union[int, tuple[int]]): The size of the window to take a max over, that should be a tuple
|
ksize (Union[int, tuple[int]]): The size of the kernel, that should be a tuple
|
||||||
of two `int` for width and height. Default: 1.
|
of two `int` for height and width. Default: 1.
|
||||||
stride (Union[int, tuple[int]]): The stride of the window, that should be a tuple of two `int` for
|
strides (Union[int, tuple[int]]): The stride of the window, that should be
|
||||||
width and height. Default: 1.
|
a tuple of two `int` for height and width. Default: 1.
|
||||||
padding (str): The optional values for pad mode "SAME", "VALID". Default: "VALID".
|
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, ksize=1, strides=1, padding="VALID"):
|
def __init__(self, ksize=1, strides=1, padding="valid"):
|
||||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
||||||
validator.check_type('padding', padding, [str])
|
|
||||||
self.ksize = ksize
|
|
||||||
self.strides = strides
|
|
||||||
self.padding = padding.upper()
|
|
||||||
self.ksize = validator.check_type('ksize', self.ksize, [int, tuple])
|
|
||||||
self.strides = validator.check_type('strides', self.strides, [int, tuple])
|
|
||||||
self.padding = validator.check_string('padding', self.padding, ['VALID', 'SAME'])
|
|
||||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||||
|
validator.check_type('ksize', ksize, [int, tuple])
|
||||||
|
validator.check_type('strides', strides, [int, tuple])
|
||||||
|
self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'])
|
||||||
self.add_prim_attr("padding", self.padding)
|
self.add_prim_attr("padding", self.padding)
|
||||||
self.add_prim_attr('data_format', "NCHW")
|
self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax")
|
||||||
|
if not self.is_maxpoolwithargmax:
|
||||||
|
self.add_prim_attr('data_format', "NCHW")
|
||||||
|
|
||||||
if isinstance(self.ksize, int):
|
if isinstance(ksize, int):
|
||||||
self.pool_h = validator.check_integer("ksize", self.ksize, 1, Rel.GE)
|
validator.check_integer("ksize", ksize, 1, Rel.GE)
|
||||||
self.pool_w = self.pool_h
|
self.ksize = (1, 1, ksize, ksize)
|
||||||
self.add_prim_attr("ksize", (1, 1, self.ksize, self.ksize))
|
|
||||||
elif isinstance(self.ksize, tuple):
|
|
||||||
if (len(self.ksize) != 2 or (not isinstance(self.ksize[0], int)) or (not isinstance(self.ksize[1], int))
|
|
||||||
or self.ksize[0] <= 0 or self.ksize[1] <= 0):
|
|
||||||
raise ValueError('Each value of attr \'ksize\' of \'MaxPool\' Op passed ' +
|
|
||||||
str(self.ksize) + ', should be a int or a tuple of length 2 and greater than 0.')
|
|
||||||
self.pool_h = self.ksize[0]
|
|
||||||
self.pool_w = self.ksize[1]
|
|
||||||
self.add_prim_attr("ksize", (1, 1, self.ksize[0], self.ksize[1]))
|
|
||||||
|
|
||||||
if isinstance(self.strides, int):
|
|
||||||
self.stride_h = validator.check_integer("strides", self.strides, 1, Rel.GE)
|
|
||||||
self.stride_w = self.stride_h
|
|
||||||
self.add_prim_attr("strides", (1, 1, self.strides, self.strides))
|
|
||||||
elif isinstance(self.strides, tuple):
|
|
||||||
if (len(self.strides) != 2 or (not isinstance(self.strides[0], int)) or
|
|
||||||
(not isinstance(self.strides[1], int)) or self.strides[0] <= 0 or self.strides[1] <= 0):
|
|
||||||
raise ValueError('Each value of attr \'strides\' of \'MaxPool\' Op passed ' +
|
|
||||||
str(self.strides) + ', should be a int or a tuple of length 2 and greater than 0.')
|
|
||||||
self.stride_h = self.strides[0]
|
|
||||||
self.stride_w = self.strides[1]
|
|
||||||
self.add_prim_attr("strides", (1, 1, self.strides[0], self.strides[1]))
|
|
||||||
|
|
||||||
if self.padding == "VALID":
|
|
||||||
self.pad = 0
|
|
||||||
elif self.padding == "SAME":
|
|
||||||
self.pad = math.floor((self.pool_h - 1) / 2)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError('The padding should be str and must be SAME or VALID,'
|
if (len(ksize) != 2 or
|
||||||
' but got {}.'.format(self.padding))
|
(not isinstance(ksize[0], int)) or
|
||||||
self.add_prim_attr('pad', self.pad)
|
(not isinstance(ksize[1], int)) or
|
||||||
|
ksize[0] <= 0 or
|
||||||
|
ksize[1] <= 0):
|
||||||
|
raise ValueError(f"The 'ksize' passed to operator {self.name} should be an positive int number or"
|
||||||
|
f"a tuple of two positive int numbers, but got {ksize}")
|
||||||
|
self.ksize = (1, 1, ksize[0], ksize[1])
|
||||||
|
if self.is_maxpoolwithargmax:
|
||||||
|
self.ksize = (1, self.ksize[-2], self.ksize[-1], 1)
|
||||||
|
self.add_prim_attr("ksize", self.ksize)
|
||||||
|
|
||||||
|
if isinstance(strides, int):
|
||||||
|
validator.check_integer("strides", strides, 1, Rel.GE)
|
||||||
|
self.strides = (1, 1, strides, strides)
|
||||||
|
else:
|
||||||
|
if (len(strides) != 2 or
|
||||||
|
(not isinstance(strides[0], int)) or
|
||||||
|
(not isinstance(strides[1], int)) or
|
||||||
|
strides[0] <= 0 or
|
||||||
|
strides[1] <= 0):
|
||||||
|
raise ValueError(f"The 'strides' passed to operator {self.name} should be an positive int number or"
|
||||||
|
f"a tuple of two positive int numbers, but got {strides}")
|
||||||
|
self.strides = (1, 1, strides[0], strides[1])
|
||||||
|
if self.is_maxpoolwithargmax:
|
||||||
|
self.strides = (1, self.strides[-2], self.strides[-1], 1)
|
||||||
|
self.add_prim_attr("strides", self.strides)
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
def infer_shape(self, x_shape):
|
||||||
validator.check_integer("x_shape", len(x_shape), 4, Rel.EQ)
|
validator.check_integer("x_shape", len(x_shape), 4, Rel.EQ)
|
||||||
h_input = x_shape[2]
|
batch, channel, input_h, input_w = x_shape
|
||||||
w_input = x_shape[3]
|
if self.is_maxpoolwithargmax:
|
||||||
if self.padding == "VALID":
|
_, kernel_h, kernel_w, _ = self.ksize
|
||||||
h_out = math.ceil((h_input - (self.pool_h - 1)) / self.stride_h)
|
_, stride_h, stride_w, _ = self.strides
|
||||||
w_out = math.ceil((w_input - (self.pool_w - 1)) / self.stride_w)
|
|
||||||
elif self.padding == "SAME":
|
|
||||||
h_out = math.ceil(h_input / self.stride_h)
|
|
||||||
w_out = math.ceil(w_input / self.stride_w)
|
|
||||||
else:
|
else:
|
||||||
raise ValueError('The padding should be str and must be SAME or VALID,'
|
_, _, kernel_h, kernel_w = self.ksize
|
||||||
' but got {}.'.format(self.padding))
|
_, _, stride_h, stride_w = self.strides
|
||||||
|
|
||||||
|
if self.padding == "VALID":
|
||||||
|
out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h)
|
||||||
|
out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w)
|
||||||
|
elif self.padding == "SAME":
|
||||||
|
out_h = math.ceil(input_h / stride_h)
|
||||||
|
out_w = math.ceil(input_w / stride_w)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"The padding of operator {self.name} should be a str and must be 'SAME' or 'VALID', "
|
||||||
|
f"but got {self.padding}.")
|
||||||
|
out_shape = [batch, channel, out_h, out_w]
|
||||||
|
|
||||||
out_shape = [x_shape[0], x_shape[1], h_out, w_out]
|
|
||||||
for shape_value in out_shape:
|
for shape_value in out_shape:
|
||||||
if shape_value <= 0:
|
if shape_value <= 0:
|
||||||
raise ValueError("The kernel size is not valid please check it if is larger than data's shape size.")
|
raise ValueError("The kernel size is not valid please check it if is larger than data's shape size.")
|
||||||
|
@ -887,11 +784,22 @@ class MaxPool(_Pool):
|
||||||
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ksize (Union[int, tuple[int]]): The size of the window to take a max over, that should be a tuple
|
ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
|
||||||
of two `int` for width and height. Default: 1.
|
is an int number that represents height and width are both ksize, or a tuple
|
||||||
stride (Union[int, tuple[int]]): The stride of the window, that should be a tuple of two `int` for
|
of two int numbers that represent height and width respectively. Default: 1.
|
||||||
width and height. Default: 1.
|
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
padding (str): The optional values for pad mode "SAME", "VALID". Default: "VALID".
|
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively. Default: 1.
|
||||||
|
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. Output height and width will be the same as
|
||||||
|
the input. Total number of padding will be calculated for horizontal and vertical
|
||||||
|
direction and evenly distributed to top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
||||||
|
will be return without padding. Extra pixels will be discarded.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||||
|
@ -901,10 +809,83 @@ class MaxPool(_Pool):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, ksize=1, strides=1, padding="VALID"):
|
def __init__(self, ksize=1, strides=1, padding="valid"):
|
||||||
super(MaxPool, self).__init__(ksize, strides, padding)
|
super(MaxPool, self).__init__(ksize, strides, padding)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxPoolWithArgmax(_Pool):
|
||||||
|
r"""
|
||||||
|
Performs max pooling on the input Tensor and return both max values and indices.
|
||||||
|
|
||||||
|
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
|
||||||
|
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
|
||||||
|
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
|
||||||
|
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value and arg value,
|
||||||
|
is an int number that represents height and width are both ksize, or a tuple of
|
||||||
|
two int numbers that represent height and width respectively. Default: 1.
|
||||||
|
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively. Default: 1.
|
||||||
|
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. Output height and width will be the same as
|
||||||
|
the input. Total number of padding will be calculated for horizontal and vertical
|
||||||
|
direction and evenly distributed to top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
||||||
|
will be return without padding. Extra pixels will be discarded.
|
||||||
|
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tuple of 2 Tensor, the maxpool result and where max values from.
|
||||||
|
|
||||||
|
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||||
|
- **mask** (Tensor) - Max values' index represented by the mask.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, ksize=1, strides=1, padding="valid"):
|
||||||
|
super(MaxPoolWithArgmax, self).__init__(ksize, strides, padding)
|
||||||
|
self.is_tbe = context.get_context("device_target") == "Ascend"
|
||||||
|
|
||||||
|
def infer_shape(self, x_shape):
|
||||||
|
out_shape = _Pool.infer_shape(self, x_shape)
|
||||||
|
_, _, out_h, out_w = out_shape
|
||||||
|
_, kernel_h, kernel_w, _ = self.ksize
|
||||||
|
|
||||||
|
argmax_shape = []
|
||||||
|
if self.is_tbe:
|
||||||
|
for i in range(4):
|
||||||
|
if i == 2:
|
||||||
|
dim = kernel_h * kernel_w
|
||||||
|
argmax_shape.append(dim)
|
||||||
|
elif i == 3:
|
||||||
|
dim = math.ceil(out_h * out_w / 16) + 1
|
||||||
|
argmax_shape.append(dim)
|
||||||
|
else:
|
||||||
|
argmax_shape.append(x_shape[i])
|
||||||
|
else:
|
||||||
|
argmax_shape = out_shape
|
||||||
|
|
||||||
|
return out_shape, argmax_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, x_dtype):
|
||||||
|
out_dtype = x_dtype
|
||||||
|
validator.check_typename("x_type", x_dtype, (mstype.float16, mstype.float32))
|
||||||
|
argmax_dtype = mstype.uint16
|
||||||
|
return out_dtype, argmax_dtype
|
||||||
|
|
||||||
|
|
||||||
class AvgPool(_Pool):
|
class AvgPool(_Pool):
|
||||||
r"""
|
r"""
|
||||||
Average pooling operation.
|
Average pooling operation.
|
||||||
|
@ -919,11 +900,22 @@ class AvgPool(_Pool):
|
||||||
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ksize (Union[int, tuple[int]]): The size of the window to take a average over, that should be a tuple
|
ksize (Union[int, tuple[int]]): The size of kernel used to take the average value,
|
||||||
of two `int` for width and height. Default: 1.
|
is an int number that represents height and width are both ksize, or a tuple
|
||||||
stride (Union[int, tuple[int]]): The stride of the window, that should be a tuple of two `int` for
|
of two int numbers that represent height and width respectively. Default: 1.
|
||||||
width and height. Default: 1.
|
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
padding (str): The optional values for pad mode "SAME", "VALID". Default: "VALID".
|
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively. Default: 1.
|
||||||
|
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
|
||||||
|
Default: "valid".
|
||||||
|
|
||||||
|
- same: Adopts the way of completion. Output height and width will be the same as
|
||||||
|
the input. Total number of padding will be calculated for horizontal and vertical
|
||||||
|
direction and evenly distributed to top and bottom, left and right if possible.
|
||||||
|
Otherwise, the last extra padding will be done from the bottom and the right side.
|
||||||
|
|
||||||
|
- valid: Adopts the way of discarding. The possibly largest height and width of output
|
||||||
|
will be return without padding. Extra pixels will be discarded.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||||
|
@ -933,7 +925,7 @@ class AvgPool(_Pool):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self, ksize=1, strides=1, padding="VALID"):
|
def __init__(self, ksize=1, strides=1, padding="valid"):
|
||||||
if context.get_context("device_target") == "GPU":
|
if context.get_context("device_target") == "GPU":
|
||||||
self.target = "GPU"
|
self.target = "GPU"
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -103,7 +103,7 @@ class ResNet50(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, pad_mode='valid')
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid')
|
||||||
|
|
||||||
self.layer1 = self.MakeLayer(
|
self.layer1 = self.MakeLayer(
|
||||||
block, 3, in_channels=64, out_channels=256, stride=1)
|
block, 3, in_channels=64, out_channels=256, stride=1)
|
||||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.nn as nn
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
|
|
||||||
|
|
||||||
class LeNet(nn.Cell):
|
class LeNet(nn.Cell):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(LeNet, self).__init__()
|
super(LeNet, self).__init__()
|
||||||
|
@ -50,8 +51,10 @@ class LeNet(nn.Cell):
|
||||||
output = self.fc3(output)
|
output = self.fc3(output)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
|
||||||
|
|
||||||
def train(net, data, label):
|
def train(net, data, label):
|
||||||
learning_rate = 0.01
|
learning_rate = 0.01
|
||||||
momentum = 0.9
|
momentum = 0.9
|
||||||
|
@ -67,11 +70,12 @@ def train(net, data, label):
|
||||||
print("+++++++++++++++++++++++++++")
|
print("+++++++++++++++++++++++++++")
|
||||||
assert res
|
assert res
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_x86_cpu
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_lenet():
|
def test_lenet():
|
||||||
data = Tensor(np.ones([32, 1 ,32, 32]).astype(np.float32) * 0.01)
|
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||||
label = Tensor(np.ones([32]).astype(np.int32))
|
label = Tensor(np.ones([32]).astype(np.int32))
|
||||||
net = LeNet()
|
net = LeNet()
|
||||||
train(net, data, label)
|
train(net, data, label)
|
||||||
|
|
|
@ -38,7 +38,7 @@ class AlexNet(nn.Cell):
|
||||||
self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
|
self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
|
||||||
self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
|
self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2,pad_mode="valid",padding=0)
|
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="valid")
|
||||||
self.flatten = nn.Flatten()
|
self.flatten = nn.Flatten()
|
||||||
self.fc1 = nn.Dense(6*6*256, 4096)
|
self.fc1 = nn.Dense(6*6*256, 4096)
|
||||||
self.fc2 = nn.Dense(4096, 4096)
|
self.fc2 = nn.Dense(4096, 4096)
|
||||||
|
|
|
@ -20,26 +20,29 @@ import numpy as np
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
from mindspore.common.initializer import initializer
|
from mindspore.common.initializer import initializer
|
||||||
from mindspore.common.parameter import Parameter
|
from mindspore.common.parameter import Parameter
|
||||||
|
|
||||||
context.set_context(device_target="Ascend")
|
context.set_context(device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
class Net(nn.Cell):
|
class Net(nn.Cell):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(Net, self).__init__()
|
super(Net, self).__init__()
|
||||||
|
|
||||||
self.maxpool = P.MaxPoolWithArgmax(pad_mode="same",
|
self.maxpool = P.MaxPoolWithArgmax(padding="same",
|
||||||
window=3,
|
ksize=3,
|
||||||
stride=2)
|
strides=2)
|
||||||
self.x = Parameter(initializer(
|
self.x = Parameter(initializer(
|
||||||
'normal', [1, 64, 112, 112]), name='w')
|
'normal', [1, 64, 112, 112]), name='w')
|
||||||
self.add = P.TensorAdd()
|
self.add = P.TensorAdd()
|
||||||
|
|
||||||
|
|
||||||
@ms_function
|
@ms_function
|
||||||
def construct(self):
|
def construct(self):
|
||||||
output = self.maxpool(self.x)
|
output = self.maxpool(self.x)
|
||||||
return output[0]
|
return output[0]
|
||||||
|
|
||||||
|
|
||||||
def test_net():
|
def test_net():
|
||||||
x = np.random.randn(1,64,112,112).astype(np.float32)
|
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||||
maxpool = Net()
|
maxpool = Net()
|
||||||
output = maxpool()
|
output = maxpool()
|
||||||
print("***********output output*********")
|
print("***********output output*********")
|
||||||
|
|
|
@ -37,9 +37,9 @@ class Net(nn.Cell):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(Net, self).__init__()
|
super(Net, self).__init__()
|
||||||
|
|
||||||
self.maxpool = P.MaxPoolWithArgmax(pad_mode="same",
|
self.maxpool = P.MaxPoolWithArgmax(padding="same",
|
||||||
window=3,
|
ksize=3,
|
||||||
stride=2)
|
strides=2)
|
||||||
|
|
||||||
@ms_function
|
@ms_function
|
||||||
def construct(self, x):
|
def construct(self, x):
|
||||||
|
|
|
@ -267,7 +267,7 @@ class ResNet(nn.Cell):
|
||||||
|
|
||||||
self.bn1 = bn_with_initialize(64)
|
self.bn1 = bn_with_initialize(64)
|
||||||
self.relu = P.ReLU()
|
self.relu = P.ReLU()
|
||||||
self.maxpool = P.MaxPoolWithArgmax(window=3, stride=2, pad_mode="same")
|
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="SAME")
|
||||||
|
|
||||||
self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1)
|
self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1)
|
||||||
self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2)
|
self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2)
|
||||||
|
|
|
@ -21,7 +21,7 @@ addn = P.AddN()
|
||||||
add = P.TensorAdd()
|
add = P.TensorAdd()
|
||||||
sub = P.Sub()
|
sub = P.Sub()
|
||||||
mul = P.Mul()
|
mul = P.Mul()
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
make_tuple = Primitive('make_tuple')
|
make_tuple = Primitive('make_tuple')
|
||||||
four2five = Primitive('Four2Five')
|
four2five = Primitive('Four2Five')
|
||||||
five2four = Primitive('Five2Four')
|
five2four = Primitive('Five2Four')
|
||||||
|
|
|
@ -17,7 +17,7 @@ from mindspore.ops import Primitive
|
||||||
|
|
||||||
tuple_getitem = Primitive('tuple_getitem')
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
add = P.TensorAdd()
|
add = P.TensorAdd()
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
make_tuple = Primitive('make_tuple')
|
make_tuple = Primitive('make_tuple')
|
||||||
transdata = Primitive("TransData")
|
transdata = Primitive("TransData")
|
||||||
|
|
||||||
|
|
|
@ -21,7 +21,7 @@ addn = P.AddN()
|
||||||
add = P.TensorAdd()
|
add = P.TensorAdd()
|
||||||
sub = P.Sub()
|
sub = P.Sub()
|
||||||
mul = P.Mul()
|
mul = P.Mul()
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
make_tuple = Primitive('make_tuple')
|
make_tuple = Primitive('make_tuple')
|
||||||
cast = Primitive('Cast')
|
cast = Primitive('Cast')
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,7 @@ from mindspore.ops import Primitive
|
||||||
|
|
||||||
tuple_getitem = Primitive('tuple_getitem')
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
add = P.TensorAdd()
|
add = P.TensorAdd()
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
make_tuple = Primitive('make_tuple')
|
make_tuple = Primitive('make_tuple')
|
||||||
four2five = Primitive('Four2Five')
|
four2five = Primitive('Four2Five')
|
||||||
five2four = Primitive('Five2Four')
|
five2four = Primitive('Five2Four')
|
||||||
|
|
|
@ -17,7 +17,7 @@ from mindspore.ops import Primitive
|
||||||
|
|
||||||
tuple_getitem = Primitive('tuple_getitem')
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
add = P.TensorAdd()
|
add = P.TensorAdd()
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
make_tuple = Primitive('make_tuple')
|
make_tuple = Primitive('make_tuple')
|
||||||
transdata = Primitive("TransData")
|
transdata = Primitive("TransData")
|
||||||
Transpose = P.Transpose()
|
Transpose = P.Transpose()
|
||||||
|
|
|
@ -22,7 +22,7 @@ add = P.TensorAdd()
|
||||||
reshape = P.Reshape()
|
reshape = P.Reshape()
|
||||||
cast = P.Cast()
|
cast = P.Cast()
|
||||||
tuple_getitem = Primitive('tuple_getitem')
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
max_pool = P.MaxPoolWithArgmax(pad_mode="same", window=3, stride=2)
|
max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2)
|
||||||
|
|
||||||
def test_addn_cast(x, y, z):
|
def test_addn_cast(x, y, z):
|
||||||
sum = addn((x, y))
|
sum = addn((x, y))
|
||||||
|
|
|
@ -107,7 +107,7 @@ class ResNet18(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, pad_mode='pad')
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
|
||||||
|
|
||||||
self.layer1 = self.MakeLayer(
|
self.layer1 = self.MakeLayer(
|
||||||
block, 2, in_channels=64, out_channels=256, stride=1)
|
block, 2, in_channels=64, out_channels=256, stride=1)
|
||||||
|
@ -176,7 +176,7 @@ class ResNet9(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, pad_mode='same')
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
|
||||||
|
|
||||||
self.layer1 = self.MakeLayer(
|
self.layer1 = self.MakeLayer(
|
||||||
block, 1, in_channels=64, out_channels=256, stride=1)
|
block, 1, in_channels=64, out_channels=256, stride=1)
|
||||||
|
|
|
@ -189,7 +189,7 @@ class ResNet50(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, weight_init=weight_conv)
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, weight_init=weight_conv)
|
||||||
self.bn1 = bn_with_initialize(64)
|
self.bn1 = bn_with_initialize(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
|
||||||
|
|
||||||
self.layer1 = MakeLayer3(
|
self.layer1 = MakeLayer3(
|
||||||
block, in_channels=64, out_channels=256, stride=1)
|
block, in_channels=64, out_channels=256, stride=1)
|
||||||
|
|
|
@ -23,12 +23,10 @@ class MaxNet(nn.Cell):
|
||||||
"""MaxNet definition"""
|
"""MaxNet definition"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
kernel_size,
|
kernel_size,
|
||||||
stride=None,
|
stride=None):
|
||||||
padding=0):
|
|
||||||
super(MaxNet, self).__init__()
|
super(MaxNet, self).__init__()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size,
|
self.maxpool = nn.MaxPool2d(kernel_size,
|
||||||
stride,
|
stride)
|
||||||
padding=padding)
|
|
||||||
|
|
||||||
def construct(self, input_x):
|
def construct(self, input_x):
|
||||||
return self.maxpool(input_x)
|
return self.maxpool(input_x)
|
||||||
|
|
|
@ -106,7 +106,7 @@ class ResNet18(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, pad_mode='pad')
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
|
||||||
|
|
||||||
self.layer1 = self.MakeLayer(
|
self.layer1 = self.MakeLayer(
|
||||||
block, 2, in_channels=64, out_channels=256, stride=1)
|
block, 2, in_channels=64, out_channels=256, stride=1)
|
||||||
|
@ -175,7 +175,7 @@ class ResNet9(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
|
||||||
|
|
||||||
self.layer1 = self.MakeLayer(
|
self.layer1 = self.MakeLayer(
|
||||||
block, 1, in_channels=64, out_channels=256, stride=1)
|
block, 1, in_channels=64, out_channels=256, stride=1)
|
||||||
|
|
|
@ -87,7 +87,7 @@ class ConvNet(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
||||||
self.bn1 = nn.BatchNorm2d(ConvNet.output_ch)
|
self.bn1 = nn.BatchNorm2d(ConvNet.output_ch)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="pad", padding=1)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||||
self.flatten = nn.Flatten()
|
self.flatten = nn.Flatten()
|
||||||
self.fc = nn.Dense(
|
self.fc = nn.Dense(
|
||||||
int(ConvNet.image_h*ConvNet.image_w*ConvNet.output_ch/(4*4)),
|
int(ConvNet.image_h*ConvNet.image_w*ConvNet.output_ch/(4*4)),
|
||||||
|
|
|
@ -46,8 +46,7 @@ class MaxNet(nn.Cell):
|
||||||
padding=0):
|
padding=0):
|
||||||
super(MaxNet, self).__init__()
|
super(MaxNet, self).__init__()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size,
|
self.maxpool = nn.MaxPool2d(kernel_size,
|
||||||
stride,
|
stride)
|
||||||
padding=padding)
|
|
||||||
|
|
||||||
def construct(self, x):
|
def construct(self, x):
|
||||||
return self.maxpool(x)
|
return self.maxpool(x)
|
||||||
|
|
|
@ -108,6 +108,7 @@ class ResidualBlock(nn.Cell):
|
||||||
|
|
||||||
class VirtualLossGrad(PrimitiveWithInfer):
|
class VirtualLossGrad(PrimitiveWithInfer):
|
||||||
""" VirtualLossGrad definition """
|
""" VirtualLossGrad definition """
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""init VirtualLossGrad"""
|
"""init VirtualLossGrad"""
|
||||||
|
@ -124,6 +125,7 @@ class VirtualLossGrad(PrimitiveWithInfer):
|
||||||
|
|
||||||
class VirtualLoss(PrimitiveWithInfer):
|
class VirtualLoss(PrimitiveWithInfer):
|
||||||
""" VirtualLoss definition """
|
""" VirtualLoss definition """
|
||||||
|
|
||||||
@prim_attr_register
|
@prim_attr_register
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""init VirtualLoss"""
|
"""init VirtualLoss"""
|
||||||
|
@ -138,6 +140,7 @@ class VirtualLoss(PrimitiveWithInfer):
|
||||||
# pylint: disable=unused-argument
|
# pylint: disable=unused-argument
|
||||||
dx = loss_grad(x, out, dout)
|
dx = loss_grad(x, out, dout)
|
||||||
return (dx,)
|
return (dx,)
|
||||||
|
|
||||||
return bprop
|
return bprop
|
||||||
|
|
||||||
def infer_shape(self, x_shape):
|
def infer_shape(self, x_shape):
|
||||||
|
@ -149,6 +152,7 @@ class VirtualLoss(PrimitiveWithInfer):
|
||||||
|
|
||||||
class VirtualNetWithLoss(nn.Cell):
|
class VirtualNetWithLoss(nn.Cell):
|
||||||
""" VirtualNetWithLoss definition """
|
""" VirtualNetWithLoss definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(VirtualNetWithLoss, self).__init__()
|
super(VirtualNetWithLoss, self).__init__()
|
||||||
self.loss = VirtualLoss()
|
self.loss = VirtualLoss()
|
||||||
|
@ -161,6 +165,7 @@ class VirtualNetWithLoss(nn.Cell):
|
||||||
|
|
||||||
class SoftMaxGrad(nn.Cell):
|
class SoftMaxGrad(nn.Cell):
|
||||||
""" SoftMaxGrad definition """
|
""" SoftMaxGrad definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(SoftMaxGrad, self).__init__()
|
super(SoftMaxGrad, self).__init__()
|
||||||
self.network = network
|
self.network = network
|
||||||
|
@ -171,6 +176,7 @@ class SoftMaxGrad(nn.Cell):
|
||||||
|
|
||||||
class DropoutGrad(nn.Cell):
|
class DropoutGrad(nn.Cell):
|
||||||
""" DropoutGrad definition """
|
""" DropoutGrad definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(DropoutGrad, self).__init__()
|
super(DropoutGrad, self).__init__()
|
||||||
self.network = network
|
self.network = network
|
||||||
|
@ -181,6 +187,7 @@ class DropoutGrad(nn.Cell):
|
||||||
|
|
||||||
class ScalarSummaryNet(nn.Cell):
|
class ScalarSummaryNet(nn.Cell):
|
||||||
""" ScalarSummaryNet definition """
|
""" ScalarSummaryNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(ScalarSummaryNet, self).__init__()
|
super(ScalarSummaryNet, self).__init__()
|
||||||
self.summary = P.ScalarSummary()
|
self.summary = P.ScalarSummary()
|
||||||
|
@ -193,6 +200,7 @@ class ScalarSummaryNet(nn.Cell):
|
||||||
|
|
||||||
class FusedBatchNormGrad(nn.Cell):
|
class FusedBatchNormGrad(nn.Cell):
|
||||||
""" FusedBatchNormGrad definition """
|
""" FusedBatchNormGrad definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(FusedBatchNormGrad, self).__init__()
|
super(FusedBatchNormGrad, self).__init__()
|
||||||
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||||
|
@ -204,6 +212,7 @@ class FusedBatchNormGrad(nn.Cell):
|
||||||
|
|
||||||
class NetWithLoss(nn.Cell):
|
class NetWithLoss(nn.Cell):
|
||||||
""" NetWithLoss definition """
|
""" NetWithLoss definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(NetWithLoss, self).__init__()
|
super(NetWithLoss, self).__init__()
|
||||||
self.loss = P.SmoothL1Loss()
|
self.loss = P.SmoothL1Loss()
|
||||||
|
@ -216,6 +225,7 @@ class NetWithLoss(nn.Cell):
|
||||||
|
|
||||||
class Grad(nn.Cell):
|
class Grad(nn.Cell):
|
||||||
""" GradWrap definition """
|
""" GradWrap definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(Grad, self).__init__()
|
super(Grad, self).__init__()
|
||||||
self.network = network
|
self.network = network
|
||||||
|
@ -227,6 +237,7 @@ class Grad(nn.Cell):
|
||||||
|
|
||||||
class BatchnormNet(nn.Cell):
|
class BatchnormNet(nn.Cell):
|
||||||
""" BatchnormNet definition """
|
""" BatchnormNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(BatchnormNet, self).__init__()
|
super(BatchnormNet, self).__init__()
|
||||||
self.conv1 = nn.Conv2d(3, 4, kernel_size=8, stride=2, pad_mode="pad", padding=3)
|
self.conv1 = nn.Conv2d(3, 4, kernel_size=8, stride=2, pad_mode="pad", padding=3)
|
||||||
|
@ -247,6 +258,7 @@ class BatchnormNet(nn.Cell):
|
||||||
|
|
||||||
class NetWithLossClass(nn.Cell):
|
class NetWithLossClass(nn.Cell):
|
||||||
""" NetWithLossClass definition """
|
""" NetWithLossClass definition """
|
||||||
|
|
||||||
def __init__(self, network):
|
def __init__(self, network):
|
||||||
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
||||||
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||||
|
@ -259,12 +271,13 @@ class NetWithLossClass(nn.Cell):
|
||||||
|
|
||||||
class BlockNet(nn.Cell):
|
class BlockNet(nn.Cell):
|
||||||
""" BlockNet definition """
|
""" BlockNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(BlockNet, self).__init__()
|
super(BlockNet, self).__init__()
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, pad_mode="pad", padding=3)
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
|
||||||
self.block_down_sample = ResidualBlock(
|
self.block_down_sample = ResidualBlock(
|
||||||
64, 256, stride=1, down_sample=True
|
64, 256, stride=1, down_sample=True
|
||||||
)
|
)
|
||||||
|
@ -281,6 +294,7 @@ class BlockNet(nn.Cell):
|
||||||
|
|
||||||
class Conv2dWithBiasNet(nn.Cell):
|
class Conv2dWithBiasNet(nn.Cell):
|
||||||
""" Conv2dWithBiasNet definition """
|
""" Conv2dWithBiasNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(Conv2dWithBiasNet, self).__init__()
|
super(Conv2dWithBiasNet, self).__init__()
|
||||||
self.conv = nn.Conv2d(3, 10, 1, bias_init='zeros')
|
self.conv = nn.Conv2d(3, 10, 1, bias_init='zeros')
|
||||||
|
@ -292,6 +306,7 @@ class Conv2dWithBiasNet(nn.Cell):
|
||||||
|
|
||||||
class Conv2dNativeNet(nn.Cell):
|
class Conv2dNativeNet(nn.Cell):
|
||||||
""" Conv2dNativeNet definition """
|
""" Conv2dNativeNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(Conv2dNativeNet, self).__init__()
|
super(Conv2dNativeNet, self).__init__()
|
||||||
self.conv = P.DepthwiseConv2dNative(channel_multiplier=3, kernel_size=(3, 3))
|
self.conv = P.DepthwiseConv2dNative(channel_multiplier=3, kernel_size=(3, 3))
|
||||||
|
@ -309,9 +324,10 @@ class Conv2dNativeNet(nn.Cell):
|
||||||
|
|
||||||
class MakeRefKeyNet(nn.Cell):
|
class MakeRefKeyNet(nn.Cell):
|
||||||
""" MakeRefKeyNet definition """
|
""" MakeRefKeyNet definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(MakeRefKeyNet, self).__init__()
|
super(MakeRefKeyNet, self).__init__()
|
||||||
self.y= Parameter(Tensor([1.0], mindspore.float32), name="y")
|
self.y = Parameter(Tensor([1.0], mindspore.float32), name="y")
|
||||||
|
|
||||||
def construct(self, x):
|
def construct(self, x):
|
||||||
key = P.MakeRefKey("y")()
|
key = P.MakeRefKey("y")()
|
||||||
|
@ -321,6 +337,7 @@ class MakeRefKeyNet(nn.Cell):
|
||||||
|
|
||||||
class StateNet(nn.Cell):
|
class StateNet(nn.Cell):
|
||||||
""" StateTestTensor definition """
|
""" StateTestTensor definition """
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super(StateNet, self).__init__()
|
super(StateNet, self).__init__()
|
||||||
weight = Tensor(np.ones([2, 1, 2, 2], np.float32))
|
weight = Tensor(np.ones([2, 1, 2, 2], np.float32))
|
||||||
|
@ -347,6 +364,24 @@ class ComparisonNet(nn.Cell):
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def test_max_pool_with_arg_max():
|
||||||
|
class NetMaxPoolWithArgMax(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
""" ComparisonNet definition """
|
||||||
|
super(NetMaxPoolWithArgMax, self).__init__()
|
||||||
|
self.max_pool_with_arg_max = P.MaxPoolWithArgmax(padding="valid", ksize=2, strides=1)
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
ret = self.max_pool_with_arg_max(x)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
x = Tensor(np.ones([1, 1, 3, 3], np.float32))
|
||||||
|
net = NetMaxPoolWithArgMax()
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||||
|
ret = net(x)
|
||||||
|
print(ret)
|
||||||
|
|
||||||
|
|
||||||
test_cases = [
|
test_cases = [
|
||||||
('SoftMaxGrad', {
|
('SoftMaxGrad', {
|
||||||
'block': SoftMaxGrad(VirtualNetWithLoss(P.Softmax())),
|
'block': SoftMaxGrad(VirtualNetWithLoss(P.Softmax())),
|
||||||
|
@ -382,7 +417,7 @@ test_cases = [
|
||||||
'desc_inputs': [Tensor(np.ones([1, 3, 8, 8], np.float32)), Tensor(np.zeros([1, 64, 4, 4], np.float32))],
|
'desc_inputs': [Tensor(np.ones([1, 3, 8, 8], np.float32)), Tensor(np.zeros([1, 64, 4, 4], np.float32))],
|
||||||
}),
|
}),
|
||||||
('Conv2dWithBiasGrad', {
|
('Conv2dWithBiasGrad', {
|
||||||
'block': Grad(NetWithLossClass(Conv2dWithBiasNet())),
|
'block': Grad(NetWithLossClass(Conv2dWithBiasNet())),
|
||||||
'desc_inputs': [Tensor(np.ones([1, 3, 16, 16], np.float32)), Tensor(np.zeros([1, 2560], np.float32))],
|
'desc_inputs': [Tensor(np.ones([1, 3, 16, 16], np.float32)), Tensor(np.zeros([1, 2560], np.float32))],
|
||||||
}),
|
}),
|
||||||
('Conv2dNativeGrad', {
|
('Conv2dNativeGrad', {
|
||||||
|
@ -407,114 +442,93 @@ test_cases = [
|
||||||
}),
|
}),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
test_cases_for_verify_exception = [
|
test_cases_for_verify_exception = [
|
||||||
('Conv2d_ValueError_1', {
|
('Conv2d_ValueError_1', {
|
||||||
'block': (lambda _ : P.Conv2D(3, 4, mode=-2.0), {'exception': ValueError}),
|
'block': (lambda _: P.Conv2D(3, 4, mode=-2.0), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('Conv2d_ValueError_2', {
|
('Conv2d_ValueError_2', {
|
||||||
'block': (lambda _ : P.Conv2D(3, 4, mode=-2), {'exception': ValueError}),
|
'block': (lambda _: P.Conv2D(3, 4, mode=-2), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('MaxPoolWithArgmax_ValueError_1', {
|
('MaxPoolWithArgmax_ValueError_1', {
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(pad_mode='sane'), {'exception': ValueError}),
|
'block': (lambda _: P.MaxPoolWithArgmax(padding='sane'), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('MaxPoolWithArgmax_ValueError_2', {
|
('MaxPoolWithArgmax_ValueError_2', {
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(data_mode=2), {'exception': ValueError}),
|
'block': (lambda _: P.MaxPoolWithArgmax(ksize='1'), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('MaxPoolWithArgmax_ValueError_3', {
|
('MaxPoolWithArgmax_ValueError_3', {
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(ceil_mode=2), {'exception': ValueError}),
|
'block': (lambda _: P.MaxPoolWithArgmax(ksize=-2), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('MaxPoolWithArgmax_ValueError_4', {
|
('MaxPoolWithArgmax_ValueError_4', {
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(pad_mode="pad", pad=-1), {'exception': ValueError}),
|
'block': (lambda _: P.MaxPoolWithArgmax(strides=-1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
|
||||||
}),
|
|
||||||
('MaxPoolWithArgmax_ValueError_5', {
|
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(pad_mode="pad", pad='1'), {'exception': ValueError}),
|
|
||||||
'desc_inputs': [0],
|
|
||||||
}),
|
|
||||||
('MaxPoolWithArgmax_ValueError_6', {
|
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(window='1'), {'exception': ValueError}),
|
|
||||||
'desc_inputs': [0],
|
|
||||||
}),
|
|
||||||
('MaxPoolWithArgmax_ValueError_7', {
|
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(window=-2), {'exception': ValueError}),
|
|
||||||
'desc_inputs': [0],
|
|
||||||
}),
|
|
||||||
('MaxPoolWithArgmax_ValueError_8', {
|
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(stride=-1), {'exception': ValueError}),
|
|
||||||
'desc_inputs': [0],
|
|
||||||
}),
|
|
||||||
('MaxPoolWithArgmax_ValueError_9', {
|
|
||||||
'block': (lambda _ : P.MaxPoolWithArgmax(alpha='1'), {'exception': ValueError}),
|
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('FusedBatchNorm_ValueError_1', {
|
('FusedBatchNorm_ValueError_1', {
|
||||||
'block': (lambda _ : P.FusedBatchNorm(mode="1", epsilon=1e-5, momentum=0.1), {'exception': ValueError}),
|
'block': (lambda _: P.FusedBatchNorm(mode="1", epsilon=1e-5, momentum=0.1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('FusedBatchNorm_ValueError_2', {
|
('FusedBatchNorm_ValueError_2', {
|
||||||
'block': (lambda _ : P.FusedBatchNorm(mode=2, epsilon=1e-5, momentum=0.1), {'exception': ValueError}),
|
'block': (lambda _: P.FusedBatchNorm(mode=2, epsilon=1e-5, momentum=0.1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('FusedBatchNorm_ValueError_3', {
|
('FusedBatchNorm_ValueError_3', {
|
||||||
'block': (lambda _ : P.FusedBatchNorm(mode=0, epsilon=-1e-5, momentum=0.1), {'exception': ValueError}),
|
'block': (lambda _: P.FusedBatchNorm(mode=0, epsilon=-1e-5, momentum=0.1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('FusedBatchNorm_ValueError_4', {
|
('FusedBatchNorm_ValueError_4', {
|
||||||
'block': (lambda _ : P.FusedBatchNorm(mode=0, epsilon=1e-5, momentum=-0.1), {'exception': ValueError}),
|
'block': (lambda _: P.FusedBatchNorm(mode=0, epsilon=1e-5, momentum=-0.1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('FusedBatchNorm_ValueError_5', {
|
('FusedBatchNorm_ValueError_5', {
|
||||||
'block': (lambda _ : P.FusedBatchNorm(mode=1, epsilon=-0.001, momentum=0.0), {'exception': ValueError}),
|
'block': (lambda _: P.FusedBatchNorm(mode=1, epsilon=-0.001, momentum=0.0), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('Softmax_ValueError_1', {
|
('Softmax_ValueError_1', {
|
||||||
'block': (lambda _ : P.Softmax("1"), {'exception': ValueError}),
|
'block': (lambda _: P.Softmax("1"), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('Softmax_ValueError_2', {
|
('Softmax_ValueError_2', {
|
||||||
'block': (lambda _ : P.Softmax(1.1), {'exception': ValueError}),
|
'block': (lambda _: P.Softmax(1.1), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('Softmax_ValueError_3', {
|
('Softmax_ValueError_3', {
|
||||||
'block': (lambda _ : P.Softmax(axis="1"), {'exception': ValueError}),
|
'block': (lambda _: P.Softmax(axis="1"), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('DropoutGenMask_ValueError_1', {
|
('DropoutGenMask_ValueError_1', {
|
||||||
'block': (lambda _ : P.DropoutGenMask(Seed0="seed0"), {'exception': ValueError}),
|
'block': (lambda _: P.DropoutGenMask(Seed0="seed0"), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('DropoutGenMask_ValueError_2', {
|
('DropoutGenMask_ValueError_2', {
|
||||||
'block': (lambda _ : P.DropoutGenMask(Seed0=1.0), {'exception': ValueError}),
|
'block': (lambda _: P.DropoutGenMask(Seed0=1.0), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('DropoutGenMask_ValueError_3', {
|
('DropoutGenMask_ValueError_3', {
|
||||||
'block': (lambda _ : P.DropoutGenMask(Seed1="seed1"), {'exception': ValueError}),
|
'block': (lambda _: P.DropoutGenMask(Seed1="seed1"), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('DropoutGenMask_ValueError_4', {
|
('DropoutGenMask_ValueError_4', {
|
||||||
'block': (lambda _ : P.DropoutGenMask(Seed1=2.0), {'exception': ValueError}),
|
'block': (lambda _: P.DropoutGenMask(Seed1=2.0), {'exception': ValueError}),
|
||||||
'desc_inputs': [0],
|
'desc_inputs': [0],
|
||||||
}),
|
}),
|
||||||
('MaxPool2d_ValueError_1', {
|
('MaxPool2d_ValueError_1', {
|
||||||
'block': (nn.MaxPool2d(kernel_size=120, stride=1, pad_mode="valid", padding=0), {'exception': ValueError}),
|
'block': (nn.MaxPool2d(kernel_size=120, stride=1, pad_mode="valid"), {'exception': ValueError}),
|
||||||
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
||||||
}),
|
}),
|
||||||
('MaxPool2d_ValueError_2', {
|
('MaxPool2d_ValueError_2', {
|
||||||
'block': (
|
'block': (
|
||||||
lambda _ : nn.MaxPool2d(kernel_size=120, stride=True, pad_mode="valid", padding=0),
|
lambda _: nn.MaxPool2d(kernel_size=120, stride=True, pad_mode="valid"),
|
||||||
{'exception': ValueError},
|
{'exception': ValueError},
|
||||||
),
|
),
|
||||||
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
||||||
}),
|
}),
|
||||||
('MaxPool2d_ValueError_3', {
|
('MaxPool2d_ValueError_3', {
|
||||||
'block': (
|
'block': (
|
||||||
lambda _ : nn.MaxPool2d(kernel_size=3, stride=True, pad_mode="valid", padding=0),
|
lambda _: nn.MaxPool2d(kernel_size=3, stride=True, pad_mode="valid"),
|
||||||
{'exception': ValueError},
|
{'exception': ValueError},
|
||||||
),
|
),
|
||||||
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
'desc_inputs': [Tensor(np.random.randn(32, 3, 112, 112).astype(np.float32).transpose(0, 3, 1, 2))],
|
||||||
|
@ -532,4 +546,3 @@ def test_compile():
|
||||||
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
@mindspore_test(pipeline_for_verify_exception_for_case_by_case_config)
|
||||||
def test_check_exception():
|
def test_check_exception():
|
||||||
return test_cases_for_verify_exception
|
return test_cases_for_verify_exception
|
||||||
|
|
||||||
|
|
|
@ -571,7 +571,7 @@ test_case_nn_ops = [
|
||||||
'desc_bprop': [[3, 4, 6, 6]],
|
'desc_bprop': [[3, 4, 6, 6]],
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
('MaxPoolWithArgmax', {
|
('MaxPoolWithArgmax', {
|
||||||
'block': P.MaxPoolWithArgmax(window=2, stride=2),
|
'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
|
||||||
'desc_inputs': [[128, 32, 32, 64]],
|
'desc_inputs': [[128, 32, 32, 64]],
|
||||||
'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
|
'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
|
||||||
('SoftmaxCrossEntropyWithLogits', {
|
('SoftmaxCrossEntropyWithLogits', {
|
||||||
|
|
|
@ -160,16 +160,16 @@ test_case_check_ops = [
|
||||||
'block': nn.Dense(1, 6, has_bias=False, bias_init=Tensor(np.ones([6]).astype(np.float32))),
|
'block': nn.Dense(1, 6, has_bias=False, bias_init=Tensor(np.ones([6]).astype(np.float32))),
|
||||||
'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}),
|
'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}),
|
||||||
('MaxPool2d_1', {
|
('MaxPool2d_1', {
|
||||||
'block': nn.MaxPool2d(5, pad_mode='same', padding=0),
|
'block': nn.MaxPool2d(5, pad_mode='same'),
|
||||||
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
||||||
('MaxPool2d_2', {
|
('MaxPool2d_2', {
|
||||||
'block': nn.MaxPool2d(5, pad_mode='valid', padding=0),
|
'block': nn.MaxPool2d(5, pad_mode='valid'),
|
||||||
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
||||||
('AvgPool2d_1', {
|
('AvgPool2d_1', {
|
||||||
'block': nn.AvgPool2d(5, pad_mode='same', padding=0),
|
'block': nn.AvgPool2d(5, pad_mode='same'),
|
||||||
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
||||||
('AvgPool2d_2', {
|
('AvgPool2d_2', {
|
||||||
'block': nn.AvgPool2d(5, pad_mode='valid', padding=0),
|
'block': nn.AvgPool2d(5, pad_mode='valid'),
|
||||||
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}),
|
||||||
('Conv2D_1', {
|
('Conv2D_1', {
|
||||||
'block': P.Conv2D(1, 6, pad_mode='same', pad=0),
|
'block': P.Conv2D(1, 6, pad_mode='same', pad=0),
|
||||||
|
|
|
@ -42,12 +42,10 @@ def test_maxpool2d():
|
||||||
""" test_maxpool2d """
|
""" test_maxpool2d """
|
||||||
kernel_size = 3
|
kernel_size = 3
|
||||||
stride = 3
|
stride = 3
|
||||||
padding = 0
|
|
||||||
|
|
||||||
max_pool = nn.MaxPool2d(kernel_size, stride, padding=padding)
|
max_pool = nn.MaxPool2d(kernel_size, stride)
|
||||||
assert max_pool.kernel_size == 3
|
assert max_pool.kernel_size == 3
|
||||||
assert max_pool.stride == 3
|
assert max_pool.stride == 3
|
||||||
assert max_pool.padding == 0
|
|
||||||
input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
|
input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6]).astype(np.float32))
|
||||||
output = max_pool(input_data)
|
output = max_pool(input_data)
|
||||||
output_np = output.asnumpy()
|
output_np = output.asnumpy()
|
||||||
|
|
|
@ -89,7 +89,7 @@ class ConvNet(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode='pad', padding=3)
|
self.conv1 = nn.Conv2d(3, ConvNet.output_ch, kernel_size=7, stride=2, pad_mode='pad', padding=3)
|
||||||
self.bn1 = nn.BatchNorm2d(ConvNet.output_ch)
|
self.bn1 = nn.BatchNorm2d(ConvNet.output_ch)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='pad', padding=1)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||||
self.flatten = nn.Flatten()
|
self.flatten = nn.Flatten()
|
||||||
self.fc = nn.Dense(
|
self.fc = nn.Dense(
|
||||||
int(ConvNet.image_h*ConvNet.image_w*ConvNet.output_ch/(4*4)),
|
int(ConvNet.image_h*ConvNet.image_w*ConvNet.output_ch/(4*4)),
|
||||||
|
|
|
@ -49,23 +49,14 @@ def test_maxpool2d():
|
||||||
""" test_maxpool2d """
|
""" test_maxpool2d """
|
||||||
kernel_size = 3
|
kernel_size = 3
|
||||||
stride = 3
|
stride = 3
|
||||||
padding = 2
|
|
||||||
|
|
||||||
max_pool = nn.MaxPool2d(kernel_size, stride, pad_mode='SAME', padding=padding)
|
max_pool = nn.MaxPool2d(kernel_size, stride, pad_mode='SAME')
|
||||||
assert max_pool.kernel_size == 3
|
assert max_pool.kernel_size == 3
|
||||||
assert max_pool.stride == 3
|
assert max_pool.stride == 3
|
||||||
assert max_pool.padding == 2
|
|
||||||
input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6])*0.1)
|
input_data = Tensor(np.random.randint(0, 255, [1, 3, 6, 6])*0.1)
|
||||||
output = max_pool(input_data)
|
output = max_pool(input_data)
|
||||||
output_np = output.asnumpy()
|
output_np = output.asnumpy()
|
||||||
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
||||||
|
|
||||||
|
|
||||||
def test_maxpool2d_error_padding():
|
|
||||||
""" test_maxpool2d_error_padding """
|
|
||||||
kernel_size = 3.5
|
|
||||||
stride = 3
|
|
||||||
padding = 1
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
nn.MaxPool2d(kernel_size, stride, padding=padding)
|
|
||||||
|
|
||||||
|
|
|
@ -23,7 +23,7 @@ def test_avg_pooling():
|
||||||
[-9., -1., 3., 4.],
|
[-9., -1., 3., 4.],
|
||||||
[1., -1., -3., -6.],
|
[1., -1., -3., -6.],
|
||||||
[-2., -1., -2., -15.]]]]).astype(np.float32)
|
[-2., -1., -2., -15.]]]]).astype(np.float32)
|
||||||
out = vm.avg_pooling(input_data, pool_h=2, pool_w=2, stride=1, pad=0)
|
out = vm.avg_pooling(input_data, pool_h=2, pool_w=2, stride=1)
|
||||||
expect_out = [[[[-4.25, 0.0, 4.25],
|
expect_out = [[[[-4.25, 0.0, 4.25],
|
||||||
[-2.5, -0.5, -0.5],
|
[-2.5, -0.5, -0.5],
|
||||||
[-0.75, -1.75, -6.5]]]]
|
[-0.75, -1.75, -6.5]]]]
|
||||||
|
@ -37,9 +37,9 @@ def test_avg_pool_grad():
|
||||||
[5, 6, 7, 8],
|
[5, 6, 7, 8],
|
||||||
[9, 10, 11, 12],
|
[9, 10, 11, 12],
|
||||||
[13, 14, 15, 16]]]]).astype(np.float32)
|
[13, 14, 15, 16]]]]).astype(np.float32)
|
||||||
dout = vm.avg_pooling(input_data, pool_h=2, pool_w=2, stride=1, pad=0)
|
dout = vm.avg_pooling(input_data, pool_h=2, pool_w=2, stride=1)
|
||||||
print("vm.avg_pooling dout: ", dout)
|
print("vm.avg_pooling dout: ", dout)
|
||||||
out = vm.avg_pool_grad(dout, input_data.shape, 2, 2, 1, 0)
|
out = vm.avg_pool_grad(dout, input_data.shape, 2, 2, 1)
|
||||||
print("vm.avg_pool_grad: ", out)
|
print("vm.avg_pool_grad: ", out)
|
||||||
assert True
|
assert True
|
||||||
|
|
||||||
|
@ -202,7 +202,7 @@ def test_max_pooling():
|
||||||
[-9., -1., 3., 4.],
|
[-9., -1., 3., 4.],
|
||||||
[1., -1., -3., -6.],
|
[1., -1., -3., -6.],
|
||||||
[-2., -1., -2., -15.]]]]).astype(np.float32)
|
[-2., -1., -2., -15.]]]]).astype(np.float32)
|
||||||
out = vm.max_pooling(input_data, pool_h=2, pool_w=2, stride=1, pad=0)
|
out = vm.max_pooling(input_data, pool_h=2, pool_w=2, stride=1)
|
||||||
expect_out = [[[[-1., 3., 9.],
|
expect_out = [[[[-1., 3., 9.],
|
||||||
[1., 3., 4.],
|
[1., 3., 4.],
|
||||||
[1., -1., -2.]]]]
|
[1., -1., -2.]]]]
|
||||||
|
|
|
@ -44,7 +44,7 @@ class Net(nn.Cell):
|
||||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
|
||||||
self.bn1 = nn.BatchNorm2d(64)
|
self.bn1 = nn.BatchNorm2d(64)
|
||||||
self.relu = nn.ReLU()
|
self.relu = nn.ReLU()
|
||||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)
|
||||||
self.flatten = nn.Flatten()
|
self.flatten = nn.Flatten()
|
||||||
self.fc = nn.Dense(int(224*224*64/16), num_classes)
|
self.fc = nn.Dense(int(224*224*64/16), num_classes)
|
||||||
|
|
||||||
|
|
|
@ -19,66 +19,82 @@ from mindspore.ops.operations import _grad_ops as G
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from mindspore.ops.vm_impl_registry import vm_impl_registry as vm_impl_getters
|
from mindspore.ops.vm_impl_registry import vm_impl_registry as vm_impl_getters
|
||||||
from .vm_interface import vm
|
from .vm_interface import vm
|
||||||
|
|
||||||
|
|
||||||
# pylint: disable=unused-argument
|
# pylint: disable=unused-argument
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.ScalarSummary)
|
@vm_impl_getters.register(P.ScalarSummary)
|
||||||
def vm_impl_scalar_summary(self):
|
def vm_impl_scalar_summary(self):
|
||||||
"""Generate vm_impl function for ScalarSummary"""
|
"""Generate vm_impl function for ScalarSummary"""
|
||||||
|
|
||||||
def vm_impl(string_in, scalar):
|
def vm_impl(string_in, scalar):
|
||||||
"""Implement by vm mode."""
|
"""Implement by vm mode."""
|
||||||
return scalar
|
return scalar
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.ReLU)
|
@vm_impl_getters.register(P.ReLU)
|
||||||
def vm_impl_relu(self):
|
def vm_impl_relu(self):
|
||||||
"""Generate vm_impl function for ReLU"""
|
"""Generate vm_impl function for ReLU"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
output = Tensor(vm.relu(x))
|
output = Tensor(vm.relu(x))
|
||||||
return output
|
return output
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.Flatten)
|
@vm_impl_getters.register(P.Flatten)
|
||||||
def vm_impl_flatten(self):
|
def vm_impl_flatten(self):
|
||||||
"""Generate vm_impl function for Flatten"""
|
"""Generate vm_impl function for Flatten"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
return Tensor(vm.flatten_batch(x))
|
return Tensor(vm.flatten_batch(x))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.Softmax)
|
@vm_impl_getters.register(P.Softmax)
|
||||||
def vm_impl_softmax(self):
|
def vm_impl_softmax(self):
|
||||||
"""Generate vm_impl function for Softmax"""
|
"""Generate vm_impl function for Softmax"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
return Tensor(vm.softmax(x))
|
return Tensor(vm.softmax(x))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.LogSoftmax)
|
@vm_impl_getters.register(P.LogSoftmax)
|
||||||
def vm_impl_log_softmax(self):
|
def vm_impl_log_softmax(self):
|
||||||
"""Generate vm_impl function for LogSoftmax"""
|
"""Generate vm_impl function for LogSoftmax"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
return Tensor(vm.logsoftmax(x))
|
return Tensor(vm.logsoftmax(x))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.Tanh)
|
@vm_impl_getters.register(P.Tanh)
|
||||||
def vm_impl_tanh(self):
|
def vm_impl_tanh(self):
|
||||||
"""Generate vm_impl function for Tanh"""
|
"""Generate vm_impl function for Tanh"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
return Tensor(vm.tanh(x))
|
return Tensor(vm.tanh(x))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.FusedBatchNorm)
|
@vm_impl_getters.register(P.FusedBatchNorm)
|
||||||
def vm_impl_fused_batch_norm(self):
|
def vm_impl_fused_batch_norm(self):
|
||||||
"""Generate vm_impl function for FusedBatchNorm"""
|
"""Generate vm_impl function for FusedBatchNorm"""
|
||||||
|
|
||||||
def vm_impl(x, scale, b, mean, variance):
|
def vm_impl(x, scale, b, mean, variance):
|
||||||
# pylint: disable=unused-argument
|
# pylint: disable=unused-argument
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
|
@ -92,12 +108,14 @@ def vm_impl_fused_batch_norm(self):
|
||||||
momentum=self.momentum)
|
momentum=self.momentum)
|
||||||
return Tensor(out), Tensor(x_mean), Tensor(x_var), \
|
return Tensor(out), Tensor(x_mean), Tensor(x_var), \
|
||||||
Tensor(running_mean), Tensor(running_var)
|
Tensor(running_mean), Tensor(running_var)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.BatchNorm)
|
@vm_impl_getters.register(P.BatchNorm)
|
||||||
def vm_impl_batch_norm(self):
|
def vm_impl_batch_norm(self):
|
||||||
"""Generate vm_impl function for BatchNorm"""
|
"""Generate vm_impl function for BatchNorm"""
|
||||||
|
|
||||||
def vm_impl(x, scale, b, mean, variance):
|
def vm_impl(x, scale, b, mean, variance):
|
||||||
# pylint: disable=unused-argument
|
# pylint: disable=unused-argument
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
|
@ -110,83 +128,106 @@ def vm_impl_batch_norm(self):
|
||||||
eps=self.epsilon)
|
eps=self.epsilon)
|
||||||
return Tensor(out), Tensor(x_mean), Tensor(x_var), \
|
return Tensor(out), Tensor(x_mean), Tensor(x_var), \
|
||||||
Tensor(running_mean), Tensor(running_var)
|
Tensor(running_mean), Tensor(running_var)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.Conv2D)
|
@vm_impl_getters.register(P.Conv2D)
|
||||||
def vm_impl_conv2d(self):
|
def vm_impl_conv2d(self):
|
||||||
"""Generate vm_impl function for Conv2D"""
|
"""Generate vm_impl function for Conv2D"""
|
||||||
|
|
||||||
def vm_impl(x, w):
|
def vm_impl(x, w):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
weight = w.asnumpy()
|
weight = w.asnumpy()
|
||||||
bias = None
|
bias = None
|
||||||
out = vm.conv2d(x, weight, bias, self.stride, self.pad, self.dilation)
|
out = vm.conv2d(x, weight, bias, self.stride, self.pad, self.dilation)
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.MaxPoolGradWithArgmax)
|
@vm_impl_getters.register(G.MaxPoolGradWithArgmax)
|
||||||
def vm_impl_max_pool_grad_with_argmax(self):
|
def vm_impl_max_pool_grad_with_argmax(self):
|
||||||
"""Generate vm_impl function for MaxPoolGradWithArgmax"""
|
"""Generate vm_impl function for MaxPoolGradWithArgmax"""
|
||||||
def vm_impl(x, argmax, dout):
|
|
||||||
|
def vm_impl(x, dout, argmax):
|
||||||
|
print("buxue")
|
||||||
|
print(argmax)
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
arg_max = argmax.asnumpy()
|
arg_max = argmax.asnumpy()
|
||||||
dx = vm.max_pool_grad_with_argmax(x, arg_max, dout, self.pool_h, self.pool_w, self.stride, self.pad)
|
dx = vm.max_pool_grad_with_argmax(x, dout, arg_max,
|
||||||
|
self.ksize[1], self.ksize[2], self.strides[1])
|
||||||
return Tensor(dx)
|
return Tensor(dx)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.MaxPoolWithArgmax)
|
@vm_impl_getters.register(P.MaxPoolWithArgmax)
|
||||||
def vm_impl_max_pool_with_argmax(self):
|
def vm_impl_max_pool_with_argmax(self):
|
||||||
"""Generate vm_impl function for MaxPoolWithArgmax"""
|
"""Generate vm_impl function for MaxPoolWithArgmax"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
out, out_argmax = vm.max_pool_with_argmax(x, self.pool_h, self.pool_w, self.stride, self.pad)
|
out, out_argmax = vm.max_pool_with_argmax(x, self.ksize[1], self.ksize[2], self.strides[1])
|
||||||
return Tensor(out), Tensor(out_argmax)
|
return Tensor(out), Tensor(out_argmax)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.MaxPool)
|
@vm_impl_getters.register(P.MaxPool)
|
||||||
def vm_impl_max_pool(self):
|
def vm_impl_max_pool(self):
|
||||||
"""Generate vm_impl function for MaxPool"""
|
"""Generate vm_impl function for MaxPool"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
out = vm.max_pooling(x, self.pool_h, self.pool_w, self.stride_h, self.pad)
|
out = vm.max_pooling(x, self.ksize[-2], self.ksize[-1], self.strides[-2])
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.MaxPoolGrad)
|
@vm_impl_getters.register(G.MaxPoolGrad)
|
||||||
def vm_impl_max_pool_grad(self):
|
def vm_impl_max_pool_grad(self):
|
||||||
"""Generate vm_impl function for MaxPoolGrad"""
|
"""Generate vm_impl function for MaxPoolGrad"""
|
||||||
|
|
||||||
def vm_impl(x, out, dout):
|
def vm_impl(x, out, dout):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
out = vm.max_pool_grad(x, dout, self.pool_h, self.pool_w, self.stride_h, self.pad)
|
out = vm.max_pool_grad(x, dout, self.ksize[-2], self.ksize[-1], self.strides[-2])
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.AvgPool)
|
@vm_impl_getters.register(P.AvgPool)
|
||||||
def vm_impl_max_pool(self):
|
def vm_impl_avg_pool(self):
|
||||||
"""Generate vm_impl function for AvgPool"""
|
"""Generate vm_impl function for AvgPool"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
out = vm.avg_pooling(x, self.pool_h, self.pool_w, self.stride_h, self.pad)
|
out = vm.avg_pooling(x, self.ksize[-2], self.ksize[-1], self.strides[-2])
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.AvgPoolGrad)
|
@vm_impl_getters.register(G.AvgPoolGrad)
|
||||||
def vm_impl_avg_pool_grad(self):
|
def vm_impl_avg_pool_grad(self):
|
||||||
"""Generate vm_impl function for AvgPoolGrad"""
|
"""Generate vm_impl function for AvgPoolGrad"""
|
||||||
|
|
||||||
def vm_impl(dout, origin_shape):
|
def vm_impl(dout, origin_shape):
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
out = vm.avg_pool_grad(dout, origin_shape, self.pool_h, self.pool_w, self.stride_h, self.pad)
|
out = vm.avg_pool_grad(dout, origin_shape, self.ksize[-2], self.ksize[-1], self.strides[-2])
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.FusedBatchNormGrad)
|
@vm_impl_getters.register(G.FusedBatchNormGrad)
|
||||||
def vm_impl_fused_batch_norm_grad(self):
|
def vm_impl_fused_batch_norm_grad(self):
|
||||||
"""Generate vm_impl function for FusedBatchNormGrad"""
|
"""Generate vm_impl function for FusedBatchNormGrad"""
|
||||||
|
|
||||||
def vm_impl(dy, x, scale, save_mean, save_inv_variance):
|
def vm_impl(dy, x, scale, save_mean, save_inv_variance):
|
||||||
dy = dy.asnumpy()
|
dy = dy.asnumpy()
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
|
@ -195,11 +236,14 @@ def vm_impl_fused_batch_norm_grad(self):
|
||||||
save_inv_variance = save_inv_variance.asnumpy()
|
save_inv_variance = save_inv_variance.asnumpy()
|
||||||
dx, dscale, dshift = vm.batch_norm_grad(dy, x, scale, save_mean, save_inv_variance)
|
dx, dscale, dshift = vm.batch_norm_grad(dy, x, scale, save_mean, save_inv_variance)
|
||||||
return (Tensor(dx), Tensor(dscale), Tensor(dshift))
|
return (Tensor(dx), Tensor(dscale), Tensor(dshift))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.BatchNormGrad)
|
@vm_impl_getters.register(G.BatchNormGrad)
|
||||||
def vm_impl_fused_batch_norm_grad(self):
|
def vm_impl_fused_batch_norm_grad(self):
|
||||||
"""Generate vm_impl function for BatchNormGrad"""
|
"""Generate vm_impl function for BatchNormGrad"""
|
||||||
|
|
||||||
def vm_impl(dy, x, scale, save_mean, save_inv_variance):
|
def vm_impl(dy, x, scale, save_mean, save_inv_variance):
|
||||||
dy = dy.asnumpy()
|
dy = dy.asnumpy()
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
|
@ -208,104 +252,123 @@ def vm_impl_fused_batch_norm_grad(self):
|
||||||
save_inv_variance = save_inv_variance.asnumpy()
|
save_inv_variance = save_inv_variance.asnumpy()
|
||||||
dx, dscale, dshift = vm.batch_norm_grad(dy, x, scale, save_mean, save_inv_variance)
|
dx, dscale, dshift = vm.batch_norm_grad(dy, x, scale, save_mean, save_inv_variance)
|
||||||
return (Tensor(dx), Tensor(dscale), Tensor(dshift))
|
return (Tensor(dx), Tensor(dscale), Tensor(dshift))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.ReluGrad)
|
@vm_impl_getters.register(G.ReluGrad)
|
||||||
def vm_impl_relu_grad(self):
|
def vm_impl_relu_grad(self):
|
||||||
"""Generate vm_impl function for ReluGrad"""
|
"""Generate vm_impl function for ReluGrad"""
|
||||||
|
|
||||||
def vm_impl(y_backprop, x):
|
def vm_impl(y_backprop, x):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
y_backprop = y_backprop.asnumpy()
|
y_backprop = y_backprop.asnumpy()
|
||||||
y_backprop = vm.relu_grad(x.copy())*y_backprop
|
y_backprop = vm.relu_grad(x.copy()) * y_backprop
|
||||||
return Tensor(y_backprop)
|
return Tensor(y_backprop)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.Conv2DBackpropInput)
|
@vm_impl_getters.register(P.Conv2DBackpropInput)
|
||||||
def vm_impl_conv2d_backprop_input(self):
|
def vm_impl_conv2d_backprop_input(self):
|
||||||
"""Generate vm_impl function for Conv2DBackpropInput"""
|
"""Generate vm_impl function for Conv2DBackpropInput"""
|
||||||
|
|
||||||
def vm_impl(dout, w, x_size):
|
def vm_impl(dout, w, x_size):
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
w = w.asnumpy()
|
w = w.asnumpy()
|
||||||
dx = vm.conv2d_backprop_input(dout, x_size, w, self.stride, self.pad)
|
dx = vm.conv2d_backprop_input(dout, x_size, w, self.stride, self.pad)
|
||||||
return Tensor(dx)
|
return Tensor(dx)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.Conv2DBackpropFilter)
|
@vm_impl_getters.register(G.Conv2DBackpropFilter)
|
||||||
def vm_impl_conv2d_backprop_filter(self):
|
def vm_impl_conv2d_backprop_filter(self):
|
||||||
"""Generate vm_impl function for Conv2DBackpropFilter"""
|
"""Generate vm_impl function for Conv2DBackpropFilter"""
|
||||||
|
|
||||||
def vm_impl(dout, x, w_size):
|
def vm_impl(dout, x, w_size):
|
||||||
x = x.asnumpy()
|
x = x.asnumpy()
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
dw = vm.conv2d_backprop_filter(dout, x, w_size, self.stride, self.pad)
|
dw = vm.conv2d_backprop_filter(dout, x, w_size, self.stride, self.pad)
|
||||||
return Tensor(dw)
|
return Tensor(dw)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.FlattenGrad)
|
@vm_impl_getters.register(G.FlattenGrad)
|
||||||
def vm_impl_flatten_grad(self):
|
def vm_impl_flatten_grad(self):
|
||||||
"""Generate vm_impl function for FlattenGrad"""
|
"""Generate vm_impl function for FlattenGrad"""
|
||||||
|
|
||||||
def vm_impl(dout, x):
|
def vm_impl(dout, x):
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
dout = vm.flatten_grad(dout, x)
|
dout = vm.flatten_grad(dout, x)
|
||||||
return Tensor(dout)
|
return Tensor(dout)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.BiasAdd)
|
@vm_impl_getters.register(P.BiasAdd)
|
||||||
def vm_impl_bias_add(self):
|
def vm_impl_bias_add(self):
|
||||||
"""Generate vm_impl function for BiasAdd"""
|
"""Generate vm_impl function for BiasAdd"""
|
||||||
|
|
||||||
def vm_impl(wx, bias):
|
def vm_impl(wx, bias):
|
||||||
wx = wx.asnumpy()
|
wx = wx.asnumpy()
|
||||||
bias = bias.asnumpy()
|
bias = bias.asnumpy()
|
||||||
out = wx + bias
|
out = wx + bias
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.BiasAddGrad)
|
@vm_impl_getters.register(G.BiasAddGrad)
|
||||||
def vm_impl_bias_add_grad(self):
|
def vm_impl_bias_add_grad(self):
|
||||||
"""Generate vm_impl function for BiasAddGrad"""
|
"""Generate vm_impl function for BiasAddGrad"""
|
||||||
|
|
||||||
def vm_impl(dout):
|
def vm_impl(dout):
|
||||||
dout = dout.asnumpy()
|
dout = dout.asnumpy()
|
||||||
shape = np.shape(dout)
|
shape = np.shape(dout)
|
||||||
return Tensor(np.add.reduce(dout, axis=tuple(range(len(shape) - 1))))
|
return Tensor(np.add.reduce(dout, axis=tuple(range(len(shape) - 1))))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.SoftmaxCrossEntropyWithLogits)
|
@vm_impl_getters.register(P.SoftmaxCrossEntropyWithLogits)
|
||||||
def vm_impl_softmax_cross_entropy_with_logits(self):
|
def vm_impl_softmax_cross_entropy_with_logits(self):
|
||||||
"""Generate vm_impl function for SoftmaxCrossEntropyWithLogits"""
|
"""Generate vm_impl function for SoftmaxCrossEntropyWithLogits"""
|
||||||
|
|
||||||
def vm_impl(logits, labels):
|
def vm_impl(logits, labels):
|
||||||
logits = logits.asnumpy()
|
logits = logits.asnumpy()
|
||||||
labels = labels.asnumpy()
|
labels = labels.asnumpy()
|
||||||
loss, dx = vm.softmax_cross_entropy_with_logits(logits, labels)
|
loss, dx = vm.softmax_cross_entropy_with_logits(logits, labels)
|
||||||
return (Tensor(np.array(loss)), Tensor(dx))
|
return (Tensor(np.array(loss)), Tensor(dx))
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.SparseSoftmaxCrossEntropyWithLogits)
|
@vm_impl_getters.register(P.SparseSoftmaxCrossEntropyWithLogits)
|
||||||
def vm_impl_sparse_softmax_cross_entropy_with_logits(self):
|
def vm_impl_sparse_softmax_cross_entropy_with_logits(self):
|
||||||
"""Generate vm_impl function for SparseSoftmaxCrossEntropyWithLogits"""
|
"""Generate vm_impl function for SparseSoftmaxCrossEntropyWithLogits"""
|
||||||
|
|
||||||
def vm_impl(logits, labels):
|
def vm_impl(logits, labels):
|
||||||
logits = logits.asnumpy()
|
logits = logits.asnumpy()
|
||||||
labels = labels.asnumpy()
|
labels = labels.asnumpy()
|
||||||
|
|
||||||
n_class = labels.max() + 1
|
n_class = labels.max() + 1
|
||||||
n_sample = labels.shape[0]
|
n_sample = labels.shape[0]
|
||||||
one_hot_label = np.zeros((n_sample, n_class))#3个样本,4个类别
|
one_hot_label = np.zeros((n_sample, n_class)) # 3个样本,4个类别
|
||||||
one_hot_label[:, labels] = 1#非零列赋值为1
|
one_hot_label[:, labels] = 1 # 非零列赋值为1
|
||||||
loss, dx = vm.softmax_cross_entropy_with_logits(logits, one_hot_label)
|
loss, dx = vm.softmax_cross_entropy_with_logits(logits, one_hot_label)
|
||||||
if self.is_grad:
|
if self.is_grad:
|
||||||
return (Tensor(dx),)
|
return (Tensor(dx),)
|
||||||
return (Tensor(np.array(loss)),)
|
return (Tensor(np.array(loss)),)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.ApplyMomentum)
|
@vm_impl_getters.register(P.ApplyMomentum)
|
||||||
def vm_impl_momentum(self):
|
def vm_impl_momentum(self):
|
||||||
"""Generate vm_impl function for Momentum"""
|
"""Generate vm_impl function for Momentum"""
|
||||||
|
|
||||||
def vm_impl(variable,
|
def vm_impl(variable,
|
||||||
accumulation,
|
accumulation,
|
||||||
learning_rate,
|
learning_rate,
|
||||||
|
@ -327,19 +390,24 @@ def vm_impl_momentum(self):
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(P.ResizeBilinear)
|
@vm_impl_getters.register(P.ResizeBilinear)
|
||||||
def vm_impl_resize_bilinear(self):
|
def vm_impl_resize_bilinear(self):
|
||||||
"""Generate vm_impl function for ResizeBilinear"""
|
"""Generate vm_impl function for ResizeBilinear"""
|
||||||
|
|
||||||
def vm_impl(x):
|
def vm_impl(x):
|
||||||
out = vm.ResizeBilinear(x)
|
out = vm.ResizeBilinear(x)
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
||||||
|
|
||||||
@vm_impl_getters.register(G.ResizeBilinearGrad)
|
@vm_impl_getters.register(G.ResizeBilinearGrad)
|
||||||
def vm_impl_resize_bilinear_grad(self):
|
def vm_impl_resize_bilinear_grad(self):
|
||||||
"""Generate vm_impl function for ResizeBilinearGrad"""
|
"""Generate vm_impl function for ResizeBilinearGrad"""
|
||||||
|
|
||||||
def vm_impl(dout, original_image):
|
def vm_impl(dout, original_image):
|
||||||
out = vm.ResizeBilinearGrad(dout, original_image)
|
out = vm.ResizeBilinearGrad(dout, original_image)
|
||||||
return Tensor(out)
|
return Tensor(out)
|
||||||
|
|
||||||
return vm_impl
|
return vm_impl
|
||||||
|
|
|
@ -19,7 +19,7 @@ from mindspore._checkparam import Rel
|
||||||
from mindspore._checkparam import ParamValidator as validator
|
from mindspore._checkparam import ParamValidator as validator
|
||||||
|
|
||||||
|
|
||||||
def avg_pooling(x, pool_h, pool_w, stride, pad):
|
def avg_pooling(x, pool_h, pool_w, stride):
|
||||||
"""
|
"""
|
||||||
Applies average pooling over an input array.
|
Applies average pooling over an input array.
|
||||||
|
|
||||||
|
@ -28,26 +28,25 @@ def avg_pooling(x, pool_h, pool_w, stride, pad):
|
||||||
pool_h (int): Height of the pooling window.
|
pool_h (int): Height of the pooling window.
|
||||||
pool_w (int): Width of the pooling window.
|
pool_w (int): Width of the pooling window.
|
||||||
stride (int): The stride of the sliding window.
|
stride (int): The stride of the sliding window.
|
||||||
pad (int): Padding to be added on height and width.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
numpy.ndarray, an output array after applying average pooling on input array.
|
numpy.ndarray, an output array after applying average pooling on input array.
|
||||||
"""
|
"""
|
||||||
validator.check_integer("stride", stride, 0, Rel.GT)
|
validator.check_integer("stride", stride, 0, Rel.GT)
|
||||||
num, channel, height, width = x.shape
|
num, channel, height, width = x.shape
|
||||||
out_h = (height + 2*pad - pool_h)//stride + 1
|
out_h = (height - pool_h)//stride + 1
|
||||||
out_w = (width + 2*pad - pool_w)//stride + 1
|
out_w = (width - pool_w)//stride + 1
|
||||||
|
|
||||||
col = im2col(x, pool_h, pool_w, stride, pad)
|
col = im2col(x, pool_h, pool_w, stride)
|
||||||
col = col.reshape(-1, pool_h*pool_w)
|
col = col.reshape(-1, pool_h*pool_w)
|
||||||
|
|
||||||
out = np.mean(col, axis=1)
|
out = np.mean(col, axis=1)
|
||||||
out = out.reshape(num, out_h, out_w, channel).transpose(0, 3, 1, 2)
|
out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
def avg_pool_grad(dout, origin_shape, pool_h, pool_w, stride, pad):
|
def avg_pool_grad(dout, origin_shape, pool_h, pool_w, stride):
|
||||||
"""
|
"""
|
||||||
Gets grad of average pooling.
|
Gets grad of average pooling.
|
||||||
|
|
||||||
|
@ -57,7 +56,6 @@ def avg_pool_grad(dout, origin_shape, pool_h, pool_w, stride, pad):
|
||||||
pool_h (int): Height of the pooling window.
|
pool_h (int): Height of the pooling window.
|
||||||
pool_w (int): Width of the pooling window.
|
pool_w (int): Width of the pooling window.
|
||||||
stride (int): The stride of the sliding window.
|
stride (int): The stride of the sliding window.
|
||||||
pad (int): Padding to be added on height and width.
|
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
numpy.ndarray, grad of avgerage pooling.
|
numpy.ndarray, grad of avgerage pooling.
|
||||||
|
@ -324,38 +322,38 @@ def matmul(x, w, b=None):
|
||||||
return y
|
return y
|
||||||
|
|
||||||
|
|
||||||
def max_pooling(x, pool_h, pool_w, stride, pad):
|
def max_pooling(x, pool_h, pool_w, stride):
|
||||||
"""Max pooling."""
|
"""Max pooling."""
|
||||||
validator.check_integer("stride", stride, 0, Rel.GT)
|
validator.check_integer("stride", stride, 0, Rel.GT)
|
||||||
num, channel, height, width = x.shape
|
num, channel, height, width = x.shape
|
||||||
out_h = (height + 2*pad - pool_h)//stride + 1
|
out_h = (height - pool_h)//stride + 1
|
||||||
out_w = (width + 2*pad - pool_w)//stride + 1
|
out_w = (width - pool_w)//stride + 1
|
||||||
|
|
||||||
col = im2col(x, pool_h, pool_w, stride, pad)
|
col = im2col(x, pool_h, pool_w, stride)
|
||||||
col = col.reshape(-1, pool_h*pool_w)
|
col = col.reshape(-1, pool_h*pool_w)
|
||||||
|
|
||||||
out = np.max(col, axis=1)
|
out = np.max(col, axis=1)
|
||||||
out = out.reshape(num, out_h, out_w, channel).transpose(0, 3, 1, 2)
|
out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
|
||||||
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
def max_pool_grad(x, dout, pool_h, pool_w, stride, pad):
|
def max_pool_grad(x, dout, pool_h, pool_w, stride):
|
||||||
"""Grad of max pooling."""
|
"""Grad of max pooling."""
|
||||||
dout = dout.transpose(0, 2, 3, 1)
|
dout = dout.transpose(0, 2, 3, 1)
|
||||||
pool_size = pool_h * pool_w
|
pool_size = pool_h * pool_w
|
||||||
dmax = np.zeros((dout.size, pool_size))
|
dmax = np.zeros((dout.size, pool_size))
|
||||||
col = im2col(x, pool_h, pool_w, stride, pad)
|
col = im2col(x, pool_h, pool_w, stride)
|
||||||
col = col.reshape(-1, pool_h*pool_w)
|
col = col.reshape(-1, pool_h*pool_w)
|
||||||
arg_max = np.argmax(col, axis=1)
|
arg_max = np.argmax(col, axis=1)
|
||||||
dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
|
dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
|
||||||
dmax = dmax.reshape(dout.shape + (pool_size,))
|
dmax = dmax.reshape(dout.shape + (pool_size,))
|
||||||
dcol = dmax.reshape(dmax.shape[0]*dmax.shape[1]*dmax.shape[2], -1)
|
dcol = dmax.reshape(dmax.shape[0]*dmax.shape[1]*dmax.shape[2], -1)
|
||||||
dx = col2im(dcol, x.shape, pool_h, pool_w, stride, pad)
|
dx = col2im(dcol, x.shape, pool_h, pool_w, stride)
|
||||||
return dx
|
return dx
|
||||||
|
|
||||||
|
|
||||||
def max_pool_grad_with_argmax(x, arg_max, dout, pool_h, pool_w, stride, pad):
|
def max_pool_grad_with_argmax(x, dout, arg_max, pool_h, pool_w, stride):
|
||||||
"""Grad of max pooling with argmax."""
|
"""Grad of max pooling with argmax."""
|
||||||
dout = dout.transpose(0, 2, 3, 1)
|
dout = dout.transpose(0, 2, 3, 1)
|
||||||
pool_size = pool_h * pool_w
|
pool_size = pool_h * pool_w
|
||||||
|
@ -363,22 +361,22 @@ def max_pool_grad_with_argmax(x, arg_max, dout, pool_h, pool_w, stride, pad):
|
||||||
dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
|
dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
|
||||||
dmax = dmax.reshape(dout.shape + (pool_size,))
|
dmax = dmax.reshape(dout.shape + (pool_size,))
|
||||||
dcol = dmax.reshape(dmax.shape[0]*dmax.shape[1]*dmax.shape[2], -1)
|
dcol = dmax.reshape(dmax.shape[0]*dmax.shape[1]*dmax.shape[2], -1)
|
||||||
dx = col2im(dcol, x.shape, pool_h, pool_w, stride, pad)
|
dx = col2im(dcol, x.shape, pool_h, pool_w, stride)
|
||||||
return dx
|
return dx
|
||||||
|
|
||||||
|
|
||||||
def max_pool_with_argmax(x, pool_h, pool_w, stride, pad):
|
def max_pool_with_argmax(x, pool_h, pool_w, stride):
|
||||||
"""Max pooling with argmax."""
|
"""Max pooling with argmax."""
|
||||||
validator.check_integer("stride", stride, 0, Rel.GT)
|
validator.check_integer("stride", stride, 0, Rel.GT)
|
||||||
num, channel, height, width = x.shape
|
num, channel, height, width = x.shape
|
||||||
out_h = (height + 2*pad - pool_h)//stride + 1
|
out_h = (height - pool_h)//stride + 1
|
||||||
out_w = (width + 2*pad - pool_w)//stride + 1
|
out_w = (width - pool_w)//stride + 1
|
||||||
col = im2col(x, pool_h, pool_w, stride, pad)
|
col = im2col(x, pool_h, pool_w, stride)
|
||||||
col = col.reshape(-1, pool_h*pool_w)
|
col = col.reshape(-1, pool_h*pool_w)
|
||||||
out = np.max(col, axis=1)
|
out = np.max(col, axis=1)
|
||||||
out_argmax = np.argmax(col, axis=1)
|
out_argmax = np.argmax(col, axis=1)
|
||||||
out = out.reshape(num, out_h, out_w, channel).transpose(0, 3, 1, 2)
|
out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
|
||||||
out_argmax = out_argmax.reshape(num, out_h, out_w, channel).transpose(0, 3, 1, 2)
|
out_argmax = out_argmax.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
|
||||||
return out, out_argmax
|
return out, out_argmax
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue