!4826 fp16 softmax activation

Merge pull request !4826 from zhaozhenlong/lite/issue/fp16_softmax_activation
This commit is contained in:
mindspore-ci-bot 2020-08-24 14:22:28 +08:00 committed by Gitee
commit 1c7a1d6fbb
10 changed files with 653 additions and 63 deletions

View File

@ -0,0 +1,98 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/activation_fp16.h"
#include "nnacl/errorcode.h"
int ReluFp16(const float16_t *src, float16_t *dst, int ele_num) {
int eight_block = UP_DIV(ele_num, C8NUM);
int i;
for (i = 0; i < eight_block - 1; i++) {
int index = i * C8NUM;
#ifdef ENABLE_NEON
float16x8_t relu_src = vld1q_f16(src + index);
float16x8_t zero_src = vdupq_n_f16(0);
relu_src = vmaxq_f16(relu_src, zero_src);
vst1q_f16(dst + index, relu_src);
#else
int j;
for (j = 0; j < C8NUM; j++) {
dst[index + j] = src[index + j] < 0 ? 0 : src[index + j];
}
#endif
}
for (int j = (eight_block - 1) * C8NUM; j < ele_num; ++j) {
dst[j] = src[j] < 0 ? 0 : src[j];
}
return NNACL_OK;
}
int Relu6Fp16(const float16_t *data, float16_t *dst, int ele_num) {
int eight_block = UP_DIV(ele_num, C8NUM);
int i;
for (i = 0; i < eight_block - 1; i++) {
int index = i * C8NUM;
#ifdef ENABLE_NEON
float16x8_t relu6_data = vld1q_f16(data + index);
float16x8_t zero_data = vdupq_n_f16(0);
float16x8_t six_data = vdupq_n_f16(6);
relu6_data = vmaxq_f16(relu6_data, zero_data);
relu6_data = vminq_f16(relu6_data, six_data);
vst1q_f16(dst + index, relu6_data);
#else
int j;
for (j = 0; j < C8NUM; ++j) {
dst[index + j] = data[index + j] < 0 ? 0 : data[index + j];
dst[index + j] = dst[index + j] > 6 ? 6 : dst[index + j];
}
#endif
}
for (int j = (eight_block - 1) * C8NUM; j < ele_num; ++j) {
dst[j] = data[j] < 0 ? 0 : data[j];
dst[j] = dst[j] > 6 ? 6 : dst[j];
}
return NNACL_OK;
}
int LReluFp16(const float16_t *src, float16_t *dst, int ele_num, float16_t alpha) {
for (int i = 0; i < ele_num; ++i) {
dst[i] = src[i] > (float16_t)0.0f ? src[i] : (src[i] * alpha);
}
return NNACL_OK;
}
int SigmoidFp16(const float16_t *src, float16_t *dst, int ele_num) {
for (int i = 0; i < ele_num; ++i) {
dst[i] = (float16_t)1.0f / (float16_t)(1.0f + exp(-src[i]));
}
return NNACL_OK;
}
int TanhFp16(const float16_t *src, float16_t *dst, int ele_num) {
for (int i = 0; i < ele_num; ++i) {
dst[i] = (float16_t)1.0f - (float16_t)2.0f / (float16_t)(exp(2 * src[i]) + 1);
}
return NNACL_OK;
}
int HSwishFp16(const float16_t *src, float16_t *dst, int ele_num) {
for (int i = 0; i < ele_num; ++i) {
float16_t in = src[i];
float16_t relu6 = MSMIN(MSMAX(in + 3, 0), 6);
dst[i] = in * relu6 / (float16_t)6.0f;
}
return NNACL_OK;
}

View File

@ -0,0 +1,44 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP16_ACTIVATION_FP16_H_
#define MINDSPORE_LITE_NNACL_FP16_ACTIVATION_FP16_H_
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#include <math.h>
#include "nnacl/op_base.h"
#include "nnacl/quantization/fixed_point.h"
typedef struct ActivationParameter {
OpParameter op_parameter_;
int type_;
float alpha_;
} ActivationParameter;
#ifdef __cplusplus
extern "C" {
#endif
int ReluFp16(const float16_t *src, float16_t *dst, int ele_num);
int Relu6Fp16(const float16_t *data, float16_t *dst, int ele_num);
int LReluFp16(const float16_t *src, float16_t *dst, int ele_num, float16_t alpha);
int SigmoidFp16(const float16_t *src, float16_t *dst, int ele_num);
int TanhFp16(const float16_t *src, float16_t *dst, int ele_num);
int HSwishFp16(const float16_t *src, float16_t *dst, int ele_num);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP16_ACTIVATION_FP16_H_

View File

@ -1,61 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/common_func.h"
void ReluFp16(float16_t *data, float16_t *dst, int ele_num) {
int eight_block = UP_DIV(ele_num, C8NUM);
for (int i = 0; i < eight_block - 1; i++) {
int index = i * C8NUM;
#ifdef ENABLE_NEON
float16x8_t relu_data = vld1q_f16(data + index);
float16x8_t zero_data = vdupq_n_f16(0);
relu_data = vmaxq_f16(relu_data, zero_data);
vst1q_f16(dst + index, relu_data);
#else
data[index] = data[index] < 0 ? 0 : data[index];
data[index + 1] = data[index + 1] < 0 ? 0 : data[index + 1];
data[index + 2] = data[index + 2] < 0 ? 0 : data[index + 2];
data[index + 3] = data[index + 3] < 0 ? 0 : data[index + 3];
#endif
}
for (int j = (eight_block - 1) * C8NUM; j < ele_num; ++j) {
data[j] = data[j] < 0 ? 0 : data[j];
}
}
void Relu6Fp16(float16_t *data, float16_t *dst, int ele_num) {
int eight_block = UP_DIV(ele_num, C8NUM);
for (int i = 0; i < eight_block - 1; i++) {
int index = i * C8NUM;
#ifdef ENABLE_NEON
float16x8_t relu6_data = vld1q_f16(data + index);
float16x8_t zero_data = vdupq_n_f16(0);
float16x8_t six_data = vdupq_n_f16(6);
relu6_data = vmaxq_f16(relu6_data, zero_data);
relu6_data = vminq_f16(relu6_data, six_data);
vst1q_f16(dst + index, relu6_data);
#else
for (int j = 0; j < C8NUM; ++j) {
data[index + j] = data[index + j] < 0 ? 0 : data[index + j];
data[index + j] = data[index + j] > 6 ? 6 : data[index + j];
}
#endif
}
for (int j = (eight_block - 1) * C8NUM; j < ele_num; ++j) {
data[j] = data[j] < 0 ? 0 : data[j];
data[j] = data[j] > 6 ? 6 : data[j];
}
}

View File

@ -41,8 +41,6 @@ void DeconvDwFp16Center(float16_t *dst, const float16_t *src, const float16_t *w
size_t kernel_h, size_t kernel_w, size_t out_h_step, size_t block_channel, size_t in_sh_step, size_t kernel_h, size_t kernel_w, size_t out_h_step, size_t block_channel, size_t in_sh_step,
size_t in_sw_step, size_t in_kh_step, size_t in_kw_step); size_t in_sw_step, size_t in_kh_step, size_t in_kw_step);
#endif #endif
void ReluFp16(float16_t *data, float16_t *dst, int ele_num);
void Relu6Fp16(float16_t *data, float16_t *dst, int ele_num);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@ -0,0 +1,67 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/softmax_fp16.h"
#include <math.h>
#include <float.h>
// output = exp(input) / reduce_sum(exp(input), axis)
void SoftmaxFp16(const float16_t *input_ptr, float16_t *output_ptr, float16_t *sum_data, SoftmaxParameter *parameter) {
int32_t axis = parameter->axis_;
int n_dim = parameter->n_dim_;
int ele_size = parameter->element_size_;
int *input_shape = parameter->input_shape_;
float16_t max_data = input_ptr[0];
for (int i = 0; i < ele_size; i++) {
max_data = max_data > input_ptr[i] ? max_data : input_ptr[i];
}
for (int i = 0; i < ele_size; i++) {
output_ptr[i] = exp(input_ptr[i] - max_data);
}
int inner_size = 1, outter_size = 1;
for (int i = 0; i < axis; i++) {
outter_size *= input_shape[i];
}
for (int i = axis + 1; i < n_dim; i++) {
inner_size *= input_shape[i];
}
for (int i = 0; i < outter_size; i++) {
int outter_offset = i * input_shape[axis] * inner_size;
int sum_outter_offset = i * inner_size;
for (int k = 0; k < inner_size; k++) {
int inner_offset = outter_offset + k;
for (int j = 0; j < input_shape[axis]; j++) {
int axis_offset = inner_offset + j * inner_size;
sum_data[k + sum_outter_offset] += output_ptr[axis_offset];
}
}
}
for (int i = 0; i < outter_size; i++) {
int outter_offset = i * input_shape[axis] * inner_size;
int sum_outter_offset = i * inner_size;
for (int j = 0; j < input_shape[axis]; j++) {
int axis_offset = outter_offset + j * inner_size;
for (int k = 0; k < inner_size; k++) {
int inner_offset = axis_offset + k;
output_ptr[inner_offset] = output_ptr[inner_offset] / sum_data[k + sum_outter_offset];
}
}
}
}

View File

@ -0,0 +1,33 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP16_SOFTMAX_FP16_H_
#define MINDSPORE_LITE_NNACL_FP16_SOFTMAX_FP16_H_
#include "nnacl/op_base.h"
#include "nnacl/softmax_parameter.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
void SoftmaxFp16(const float16_t *input_ptr, float16_t *output_ptr, float16_t *sum_data, SoftmaxParameter *parameter);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP16_SOFTMAX_FP16_H_

View File

@ -0,0 +1,156 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/activation_fp16.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::ActivationType_HSWISH;
using mindspore::schema::ActivationType_LEAKY_RELU;
using mindspore::schema::ActivationType_RELU;
using mindspore::schema::ActivationType_RELU6;
using mindspore::schema::PrimitiveType_Activation;
namespace mindspore::kernel {
int ActivationFp16CPUKernel::Init() { return RET_OK; }
int ActivationFp16CPUKernel::ReSize() { return RET_OK; }
int ActivationFp16CPUKernel::MallocTmpBuffer() {
fp16_input_ = ConvertInputFp32toFp16(in_tensors_.at(0), context_);
if (fp16_input_ == nullptr) {
MS_LOG(ERROR) << "malloc data failed";
return RET_ERROR;
}
fp16_output_ = MallocOutputFp16(out_tensors_.at(0), context_);
if (fp16_output_ == nullptr) {
MS_LOG(ERROR) << "malloc data failed";
return RET_ERROR;
}
return RET_OK;
}
void ActivationFp16CPUKernel::FreeTmpBuffer() {
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
if (fp16_input_ != nullptr) {
context_->allocator->Free(fp16_input_);
fp16_input_ = nullptr;
}
}
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
if (fp16_output_ != nullptr) {
context_->allocator->Free(fp16_output_);
fp16_output_ = nullptr;
}
}
}
int ActivationFp16CPUKernel::DoActivation(int task_id) {
auto length = in_tensors_.at(0)->ElementsNum();
int stride = UP_DIV(length, thread_count_);
int count = MSMIN(stride, length - stride * task_id);
int error_code;
if (type_ == schema::ActivationType_RELU) {
error_code = ReluFp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count);
} else if (type_ == schema::ActivationType_RELU6) {
error_code = Relu6Fp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count);
} else if (type_ == schema::ActivationType_LEAKY_RELU) {
error_code = LReluFp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count, alpha_);
} else if (type_ == schema::ActivationType_SIGMOID) {
error_code = SigmoidFp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count);
} else if (type_ == schema::ActivationType_TANH) {
error_code = TanhFp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count);
} else if (type_ == schema::ActivationType_HSWISH) {
error_code = HSwishFp16(fp16_input_ + stride * task_id, fp16_output_ + stride * task_id, count);
} else {
MS_LOG(ERROR) << "Activation fp16 not support type: " << type_;
return RET_ERROR;
}
return error_code;
}
int ActivationRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
auto activation_kernel = reinterpret_cast<ActivationFp16CPUKernel *>(cdata);
auto error_code = activation_kernel->DoActivation(task_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "ActivationRun error task_id[" << task_id << "] error_code[" << error_code << "]";
return RET_ERROR;
}
return RET_OK;
}
int ActivationFp16CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare failed.";
return ret;
}
ret = MallocTmpBuffer();
if (ret != RET_OK) {
FreeTmpBuffer();
return ret;
}
int error_code = LiteBackendParallelLaunch(ActivationRun, this, thread_count_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Activation function error error_code[" << error_code << "]";
FreeTmpBuffer();
return RET_ERROR;
}
auto out_tensor = out_tensors_.at(0);
if (out_tensor->data_type() == kNumberTypeFloat32) {
Float16ToFloat32(fp16_output_, reinterpret_cast<float *>(out_tensor->Data()), out_tensor->ElementsNum());
}
FreeTmpBuffer();
return RET_OK;
}
kernel::LiteKernel *CpuActivationFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_Activation);
auto *kernel = new (std::nothrow) ActivationFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "kernel is nullptr.";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Activation, CpuActivationFp16KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,52 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ACTIVATION_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ACTIVATION_FP16_H_
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/fp16/activation_fp16.h"
namespace mindspore::kernel {
class ActivationFp16CPUKernel : public LiteKernel {
public:
ActivationFp16CPUKernel(OpParameter *param, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(param, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {
type_ = (reinterpret_cast<ActivationParameter *>(param))->type_;
alpha_ = (float16_t)((reinterpret_cast<ActivationParameter *>(param))->alpha_);
}
~ActivationFp16CPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoActivation(int task_id);
int MallocTmpBuffer();
void FreeTmpBuffer();
private:
int thread_count_;
int type_;
float16_t alpha_;
float16_t *fp16_input_ = nullptr;
float16_t *fp16_output_ = nullptr;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_ACTIVATION_FP16_H_

View File

@ -0,0 +1,156 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string.h>
#include <vector>
#include "src/runtime/kernel/arm/fp16/softmax_fp16.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "nnacl/fp16/softmax_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_SoftMax;
namespace mindspore::kernel {
int SoftmaxFp16CPUKernel::Init() {
auto ret = SoftmaxBaseCPUKernel::Init();
if (ret != RET_OK) {
return ret;
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int SoftmaxFp16CPUKernel::ReSize() {
return SoftmaxBaseCPUKernel::ReSize();
}
int SoftmaxFp16CPUKernel::MallocTmpBuffer() {
auto n_dim = softmax_param_->n_dim_;
auto axis = softmax_param_->axis_;
if (axis == -1) {
softmax_param_->axis_ += n_dim;
axis = softmax_param_->axis_;
}
auto in_shape = in_tensors_.front()->shape();
int out_plane_size = 1;
for (int i = 0; i < axis; ++i) {
out_plane_size *= in_shape[i];
}
int in_plane_size = 1;
for (int i = axis + 1; i < n_dim; i++) {
in_plane_size *= in_shape[i];
}
sum_data_ =
reinterpret_cast<float16_t *>(context_->allocator->Malloc(out_plane_size * in_plane_size * sizeof(float16_t)));
if (sum_data_ == nullptr) {
MS_LOG(ERROR) << "malloc data for softmax fail!";
return RET_ERROR;
}
memset(sum_data_, 0, out_plane_size * in_plane_size * sizeof(float16_t));
input_fp16_ = ConvertInputFp32toFp16(in_tensors_.at(kInputIndex), context_);
if (input_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data failed";
return RET_ERROR;
}
output_fp16_ = MallocOutputFp16(out_tensors_.at(kOutputIndex), context_);
if (output_fp16_ == nullptr) {
MS_LOG(ERROR) << "malloc data failed";
return RET_ERROR;
}
return RET_OK;
}
void SoftmaxFp16CPUKernel::FreeTmpBuffer() {
if (sum_data_ != nullptr) {
context_->allocator->Free(sum_data_);
sum_data_ = nullptr;
}
if (in_tensors_.at(kInputIndex)->data_type() == kNumberTypeFloat32) {
if (input_fp16_ != nullptr) {
context_->allocator->Free(input_fp16_);
input_fp16_ = nullptr;
}
}
if (out_tensors_.at(kOutputIndex)->data_type() == kNumberTypeFloat32) {
if (output_fp16_ != nullptr) {
context_->allocator->Free(output_fp16_);
output_fp16_ = nullptr;
}
}
}
int SoftmaxFp16CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return RET_ERROR;
}
ret = MallocTmpBuffer();
if (ret != RET_OK) {
FreeTmpBuffer();
MS_LOG(ERROR) << "MallocTmpBuffer failed";
return RET_ERROR;
}
SoftmaxFp16(input_fp16_, output_fp16_, sum_data_, softmax_param_);
auto out_tensor = out_tensors_.at(kOutputIndex);
if (out_tensor->data_type() == kNumberTypeFloat32) {
Float16ToFloat32(output_fp16_, reinterpret_cast<float *>(out_tensor->Data()), out_tensor->ElementsNum());
}
FreeTmpBuffer();
return RET_OK;
}
kernel::LiteKernel *CpuSoftmaxFp16KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs,
OpParameter *opParameter, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Input opParameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_SoftMax);
auto *kernel = new (std::nothrow) SoftmaxFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new SoftmaxFp16CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_SoftMax, CpuSoftmaxFp16KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,47 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SOFTMAX_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SOFTMAX_FP16_H_
#include <arm_neon.h>
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/base/softmax_base.h"
namespace mindspore::kernel {
class SoftmaxFp16CPUKernel : public SoftmaxBaseCPUKernel {
public:
SoftmaxFp16CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: SoftmaxBaseCPUKernel(parameter, inputs, outputs, ctx, primitive), sum_data_(nullptr) {}
~SoftmaxFp16CPUKernel() = default;
int Init() override;
int ReSize() override;
int Run() override;
int MallocTmpBuffer();
void FreeTmpBuffer();
private:
float16_t *sum_data_ = nullptr;
float16_t *input_fp16_ = nullptr;
float16_t *output_fp16_ = nullptr;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SOFTMAX_FP16_H_