forked from mindspore-Ecosystem/mindspore
commit
1c6ddf70b6
|
@ -0,0 +1,98 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import random
|
||||
import grpc
|
||||
import numpy as np
|
||||
import ms_service_pb2
|
||||
import ms_service_pb2_grpc
|
||||
import mindspore.dataset as de
|
||||
from mindspore import Tensor, context
|
||||
from mindspore import log as logger
|
||||
from tests.st.networks.models.bert.src.bert_model import BertModel
|
||||
from .generate_model import AddNet, bert_net_cfg
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
def test_add():
|
||||
channel = grpc.insecure_channel('localhost:5500')
|
||||
stub = ms_service_pb2_grpc.MSServiceStub(channel)
|
||||
request = ms_service_pb2.PredictRequest()
|
||||
|
||||
x = request.data.add()
|
||||
x.tensor_shape.dims.extend([4])
|
||||
x.tensor_type = ms_service_pb2.MS_FLOAT32
|
||||
x.data = (np.ones([4]).astype(np.float32)).tobytes()
|
||||
|
||||
y = request.data.add()
|
||||
y.tensor_shape.dims.extend([4])
|
||||
y.tensor_type = ms_service_pb2.MS_FLOAT32
|
||||
y.data = (np.ones([4]).astype(np.float32)).tobytes()
|
||||
|
||||
result = stub.Predict(request)
|
||||
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
|
||||
print("ms client received: ")
|
||||
print(result_np)
|
||||
|
||||
net = AddNet()
|
||||
net_out = net(Tensor(np.ones([4]).astype(np.float32)), Tensor(np.ones([4]).astype(np.float32)))
|
||||
print("add net out: ")
|
||||
print(net_out)
|
||||
assert np.allclose(net_out.asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
|
||||
|
||||
def test_bert():
|
||||
MAX_MESSAGE_LENGTH = 0x7fffffff
|
||||
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
|
||||
segment_ids = np.zeros((2, 32), dtype=np.int32)
|
||||
input_mask = np.zeros((2, 32), dtype=np.int32)
|
||||
channel = grpc.insecure_channel('localhost:5500', options=[('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
|
||||
('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH)])
|
||||
stub = ms_service_pb2_grpc.MSServiceStub(channel)
|
||||
request = ms_service_pb2.PredictRequest()
|
||||
|
||||
x = request.data.add()
|
||||
x.tensor_shape.dims.extend([2, 32])
|
||||
x.tensor_type = ms_service_pb2.MS_INT32
|
||||
x.data = input_ids.tobytes()
|
||||
|
||||
y = request.data.add()
|
||||
y.tensor_shape.dims.extend([2, 32])
|
||||
y.tensor_type = ms_service_pb2.MS_INT32
|
||||
y.data = segment_ids.tobytes()
|
||||
|
||||
z = request.data.add()
|
||||
z.tensor_shape.dims.extend([2, 32])
|
||||
z.tensor_type = ms_service_pb2.MS_INT32
|
||||
z.data = input_mask.tobytes()
|
||||
|
||||
result = stub.Predict(request)
|
||||
result_np = np.frombuffer(result.result[0].data, dtype=np.float32).reshape(result.result[0].tensor_shape.dims)
|
||||
print("ms client received: ")
|
||||
print(result_np)
|
||||
|
||||
net = BertModel(bert_net_cfg, False)
|
||||
bert_out = net(Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask))
|
||||
print("bert out: ")
|
||||
print(bert_out)
|
||||
bert_out_size = len(bert_out)
|
||||
for i in range(bert_out_size):
|
||||
result_np = np.frombuffer(result.result[i].data, dtype=np.float32).reshape(result.result[i].tensor_shape.dims)
|
||||
logger.info("i:{}, result_np:{}, bert_out:{}".
|
||||
format(i, result.result[i].tensor_shape.dims, bert_out[i].asnumpy().shape))
|
||||
assert np.allclose(bert_out[i].asnumpy(), result_np, 0.001, 0.001, equal_nan=True)
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import random
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as de
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train.serialization import export
|
||||
from tests.st.networks.models.bert.src.bert_model import BertModel, BertConfig
|
||||
|
||||
bert_net_cfg = BertConfig(
|
||||
batch_size=2,
|
||||
seq_length=32,
|
||||
vocab_size=21128,
|
||||
hidden_size=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
intermediate_size=3072,
|
||||
hidden_act="gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
type_vocab_size=2,
|
||||
initializer_range=0.02,
|
||||
use_relative_positions=False,
|
||||
input_mask_from_dataset=True,
|
||||
token_type_ids_from_dataset=True,
|
||||
dtype=mstype.float32,
|
||||
compute_type=mstype.float16
|
||||
)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
de.config.set_seed(1)
|
||||
|
||||
class AddNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(AddNet, self).__init__()
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.add(x_, y_)
|
||||
|
||||
def export_add_model():
|
||||
net = AddNet()
|
||||
x = np.ones(4).astype(np.float32)
|
||||
y = np.ones(4).astype(np.float32)
|
||||
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='BINARY')
|
||||
|
||||
def export_bert_model():
|
||||
net = BertModel(bert_net_cfg, False)
|
||||
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
|
||||
segment_ids = np.zeros((2, 32), dtype=np.int32)
|
||||
input_mask = np.zeros((2, 32), dtype=np.int32)
|
||||
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='BINARY')
|
||||
|
||||
if __name__ == '__main__':
|
||||
export_add_model()
|
||||
export_bert_model()
|
|
@ -0,0 +1,117 @@
|
|||
#!/bin/bash
|
||||
|
||||
export GLOG_v=1
|
||||
export DEVICE_ID=1
|
||||
|
||||
MINDSPORE_INSTALL_PATH=$1
|
||||
CURRPATH=$(cd $(dirname $0); pwd)
|
||||
CURRUSER=$(whoami)
|
||||
PROJECT_PATH=${CURRPATH}/../../../
|
||||
ENV_DEVICE_ID=$DEVICE_ID
|
||||
echo "MINDSPORE_INSTALL_PATH:" ${MINDSPORE_INSTALL_PATH}
|
||||
echo "CURRPATH:" ${CURRPATH}
|
||||
echo "CURRUSER:" ${CURRUSER}
|
||||
echo "PROJECT_PATH:" ${PROJECT_PATH}
|
||||
echo "ENV_DEVICE_ID:" ${ENV_DEVICE_ID}
|
||||
|
||||
MODEL_PATH=${CURRPATH}/model
|
||||
export LD_LIBRARY_PATH=${MINDSPORE_INSTALL_PATH}/lib:/usr/local/python/python375/lib/:${LD_LIBRARY_PATH}
|
||||
export PYTHONPATH=${MINDSPORE_INSTALL_PATH}/../:${PYTHONPATH}
|
||||
|
||||
echo "LD_LIBRARY_PATH: " ${LD_LIBRARY_PATH}
|
||||
echo "PYTHONPATH: " ${PYTHONPATH}
|
||||
echo "-------------show MINDSPORE_INSTALL_PATH----------------"
|
||||
ls -l ${MINDSPORE_INSTALL_PATH}
|
||||
echo "------------------show /usr/lib64/----------------------"
|
||||
ls -l /usr/local/python/python375/lib/
|
||||
|
||||
clean_pid()
|
||||
{
|
||||
ps aux | grep 'ms_serving' | grep ${CURRUSER} | grep -v grep | awk '{print $2}' | xargs kill -15
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
echo "clean pip failed"
|
||||
fi
|
||||
sleep 6
|
||||
}
|
||||
|
||||
prepare_model()
|
||||
{
|
||||
echo "### begin to generate mode for serving test ###"
|
||||
python3 generate_model.py &> generate_model_serving.log
|
||||
echo "### end to generate mode for serving test ###"
|
||||
result=`ls -l | grep -E '*pb' | grep -v ".log" | wc -l`
|
||||
if [ ${result} -ne 2 ]
|
||||
then
|
||||
cat generate_model_serving.log
|
||||
echo "### generate model for serving test failed ###" && exit 1
|
||||
clean_pid
|
||||
fi
|
||||
rm -rf model
|
||||
mkdir model
|
||||
mv *.pb ${CURRPATH}/model
|
||||
cp ${MINDSPORE_INSTALL_PATH}/ms_serving ./
|
||||
}
|
||||
|
||||
start_service()
|
||||
{
|
||||
${CURRPATH}/ms_serving --port=$1 --model_path=${MODEL_PATH} --model_name=$2 --device_id=$3 > $2_service.log 2>&1 &
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
echo "$2 faile to start."
|
||||
fi
|
||||
|
||||
result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l`
|
||||
count=0
|
||||
while [[ ${result} -ne 1 && ${count} -lt 150 ]]
|
||||
do
|
||||
sleep 1
|
||||
count=$(($count+1))
|
||||
result=`grep -E 'MS Serving listening on 0.0.0.0:5500|MS Serving listening on 0.0.0.0:5501' $2_service.log | wc -l`
|
||||
done
|
||||
|
||||
if [ ${count} -eq 150 ]
|
||||
then
|
||||
clean_pid
|
||||
cat $2_service.log
|
||||
echo "start serving service failed!" && exit 1
|
||||
fi
|
||||
echo "### start serving service end ###"
|
||||
}
|
||||
|
||||
pytest_serving()
|
||||
{
|
||||
unset http_proxy https_proxy
|
||||
CLIENT_DEVICE_ID=$((${ENV_DEVICE_ID}+1))
|
||||
export DEVICE_ID=${CLIENT_DEVICE_ID}
|
||||
local test_client_name=$1
|
||||
echo "### $1 client start ###"
|
||||
python3 -m pytest -v -s client_example.py::${test_client_name} > ${test_client_name}_client.log 2>&1
|
||||
if [ $? -ne 0 ]
|
||||
then
|
||||
clean_pid
|
||||
cat ${test_client_name}_client.log
|
||||
echo "client $1 faile to start."
|
||||
fi
|
||||
echo "### $1 client end ###"
|
||||
}
|
||||
|
||||
test_add_model()
|
||||
{
|
||||
start_service 5500 add.pb ${ENV_DEVICE_ID}
|
||||
pytest_serving test_add
|
||||
clean_pid
|
||||
}
|
||||
|
||||
test_bert_model()
|
||||
{
|
||||
start_service 5500 bert.pb ${ENV_DEVICE_ID}
|
||||
pytest_serving test_bert
|
||||
clean_pid
|
||||
}
|
||||
|
||||
echo "-----serving start-----"
|
||||
rm -rf ms_serving *.log *.pb *.dat ${CURRPATH}/model ${CURRPATH}/kernel_meta
|
||||
prepare_model
|
||||
test_add_model
|
||||
test_bert_model
|
|
@ -0,0 +1,39 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import os
|
||||
import sys
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_single
|
||||
def test_serving():
|
||||
"""test_serving"""
|
||||
sh_path = os.path.split(os.path.realpath(__file__))[0]
|
||||
python_path_folders = []
|
||||
for python_path in sys.path:
|
||||
if os.path.isdir(python_path):
|
||||
python_path_folders += [python_path]
|
||||
folders = []
|
||||
for folder in python_path_folders:
|
||||
folders += [os.path.join(folder, x) for x in os.listdir(folder) \
|
||||
if os.path.isdir(os.path.join(folder, x)) and '/site-packages/mindspore' in os.path.join(folder, x)]
|
||||
ret = os.system(f"sh {sh_path}/serving.sh {folders[0].split('mindspore', 1)[0] + 'mindspore'}")
|
||||
assert np.allclose(ret, 0, 0.0001, 0.0001)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_serving()
|
Loading…
Reference in New Issue