add transforms to nn.probability

This commit is contained in:
bingyaweng 2020-08-11 15:45:09 +08:00
parent 2c2fe9bed9
commit 1b1ad52e7c
5 changed files with 434 additions and 0 deletions

View File

@ -0,0 +1,24 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Transforms.
The high-level components used to transform model between DNN and DNN.
"""
from . import transform_bnn
from .transform_bnn import TransformToBNN
__all__ = []
__all__.extend(transform_bnn.__all__)

View File

@ -0,0 +1,19 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
bnn loss.
"""
from . import generate_kl_loss
from .generate_kl_loss import gain_bnn_with_loss

View File

@ -0,0 +1,89 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Gain bnn_with_loss by rewrite WithLossCell as WithBNNLossCell to suit for BNN model"""
import ast
import importlib
import os
import sys
import tempfile
import astunparse
import mindspore
class _CodeTransformer(ast.NodeTransformer):
"""
Add kl_loss computation by analyzing the python code structure with the help of the AST module.
Args:
layer_count (int): The number of kl loss to be generated, namely the number of Bayesian layers.
"""
def __init__(self, layer_count):
self.layer_count = layer_count
def visit_FunctionDef(self, node):
"""visit function and add kl_loss computation."""
self.generic_visit(node)
if node.name == 'compute_kl_loss':
for i in range(self.layer_count):
func = ast.Assign(targets=[ast.Name(id='loss', ctx=ast.Store())],
value=ast.BinOp(left=ast.Name(id='loss', ctx=ast.Load()), op=ast.Add(),
right=ast.Call(func=ast.Name(id='self.kl_loss' + '[' + str(i) + ']',
ctx=ast.Load()),
args=[], keywords=[])))
node.body.insert(-1, func)
return node
def _generate_kl_loss_func(layer_count):
"""Rewrite WithLossCell as WithBNNLossCell to suit for BNN model."""
path = os.path.dirname(mindspore.__file__) + '/nn/probability/transforms/bnn_loss/withLossCell.py'
with open(path, 'r') as fp:
srclines = fp.readlines()
src = ''.join(srclines)
if src.startswith((' ', '\t')):
src = 'if 1:\n' + src
expr_ast = ast.parse(src, mode='exec')
transformer = _CodeTransformer(layer_count)
modify = transformer.visit(expr_ast)
modify = ast.fix_missing_locations(modify)
func = astunparse.unparse(modify)
return func
def gain_bnn_with_loss(layer_count, backbone, loss_fn, dnn_factor, bnn_factor):
"""
Gain bnn_with_loss, which wraps bnn network with loss function and kl loss of each bayesian layer.
Args:
layer_count (int): The number of kl loss to be generated, namely the number of Bayesian layers.
backbone (Cell): The target network to wrap.
loss_fn (Cell): The loss function used to compute loss.
dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function.
bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer.
"""
bnn_loss_func = _generate_kl_loss_func(layer_count)
path = os.path.dirname(mindspore.__file__)
bnn_loss_file = tempfile.NamedTemporaryFile(mode='w+t', suffix='.py', delete=True,
dir=path + '/nn/probability/transforms/bnn_loss')
bnn_loss_file.write(bnn_loss_func)
bnn_loss_file.seek(0)
sys.path.append(path + '/nn/probability/transforms/bnn_loss')
module_name = os.path.basename(bnn_loss_file.name)[0:-3]
bnn_loss_module = importlib.import_module(module_name, __package__)
bnn_with_loss = bnn_loss_module.WithBNNLossCell(backbone, loss_fn, dnn_factor, bnn_factor)
return bnn_with_loss, bnn_loss_file

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Original WithBNNLossCell for ast to rewrite."""
import mindspore.nn as nn
from mindspore.nn.probability.bnn_layers.conv_variational import _ConvVariational
from mindspore.nn.probability.bnn_layers.dense_variational import _DenseVariational
class WithBNNLossCell(nn.Cell):
"""
Cell with loss function.
Wraps the network with loss function. This Cell accepts data, label, backbone_factor and kl_factor as inputs and
the computed loss will be returned.
"""
def __init__(self, backbone, loss_fn, backbone_factor=1, kl_factor=1):
super(WithBNNLossCell, self).__init__(auto_prefix=False)
self._backbone = backbone
self._loss_fn = loss_fn
self.backbone_factor = backbone_factor
self.kl_factor = kl_factor
self.kl_loss = []
self._add_kl_loss(self._backbone)
def construct(self, x, label):
y_pred = self._backbone(x)
backbone_loss = self._loss_fn(y_pred, label)
kl_loss = self.cal_kl_loss()
loss = backbone_loss*self.backbone_factor + kl_loss*self.kl_factor
return loss
def cal_kl_loss(self):
"""Calculate kl loss."""
loss = 0.0
return loss
def _add_kl_loss(self, net):
"""Collect kl loss of each Bayesian layer."""
for (_, layer) in net.name_cells().items():
if isinstance(layer, (_DenseVariational, _ConvVariational)):
self.kl_loss.append(layer.compute_kl_loss)
else:
self._add_kl_loss(layer)

View File

@ -0,0 +1,246 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Transform DNN to BNN."""
import mindspore.nn as nn
from ...wrap.cell_wrapper import TrainOneStepCell
from ....nn import optim
from ....nn import layer
from .bnn_loss.generate_kl_loss import gain_bnn_with_loss
from ...probability import bnn_layers
from ..bnn_layers.conv_variational import ConvReparam
from ..bnn_layers.dense_variational import DenseReparam
__all__ = ['TransformToBNN']
class TransformToBNN:
r"""
Transform Deep Neural Network (DNN) model to Bayesian Neural Network (BNN) model.
Args:
trainable_dnn (Cell): A trainable DNN model (backbone) wrapped by TrainOneStepCell.
dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function.
bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer.
Examples:
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
>>> self.bn = nn.BatchNorm2d(64)
>>> self.relu = nn.ReLU()
>>> self.flatten = nn.Flatten()
>>> self.fc = nn.Dense(64*224*224, 12) # padding=0
>>>
>>> def construct(self, x):
>>> x = self.conv(x)
>>> x = self.bn(x)
>>> x = self.relu(x)
>>> x = self.flatten(x)
>>> out = self.fc(x)
>>> return out
>>>
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
"""
def __init__(self, trainable_dnn, dnn_factor=1, bnn_factor=1):
net_with_loss = trainable_dnn.network
self.optimizer = trainable_dnn.optimizer
self.backbone = net_with_loss.backbone_network
self.loss_fn = getattr(net_with_loss, "_loss_fn")
self.dnn_factor = dnn_factor
self.bnn_factor = bnn_factor
self.bnn_loss_file = None
def transform_to_bnn_model(self,
get_dense_args=lambda dp: {"in_channels": dp.in_channels, "has_bias": dp.has_bias,
"out_channels": dp.out_channels, "activation": dp.activation},
get_conv_args=lambda dp: {"in_channels": dp.in_channels, "out_channels": dp.out_channels,
"pad_mode": dp.pad_mode, "kernel_size": dp.kernel_size,
"stride": dp.stride, "has_bias": dp.has_bias,
"padding": dp.padding, "dilation": dp.dilation,
"group": dp.group},
add_dense_args=None,
add_conv_args=None):
r"""
Transform the whole DNN model to BNN model, and wrap BNN model by TrainOneStepCell.
Args:
get_dense_args (function): The arguments gotten from the DNN full connection layer. Default: lambda dp:
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "has_bias": dp.has_bias}.
get_conv_args (function): The arguments gotten from the DNN convolutional layer. Default: lambda dp:
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "pad_mode": dp.pad_mode,
"kernel_size": dp.kernel_size, "stride": dp.stride, "has_bias": dp.has_bias}.
add_dense_args (dict): The new arguments added to BNN full connection layer. Default: {}.
add_conv_args (dict): The new arguments added to BNN convolutional layer. Default: {}.
Returns:
Cell, a trainable BNN model wrapped by TrainOneStepCell.
Examples:
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
>>> train_bnn_network = bnn_transformer.transform_to_bnn_model()
"""
if not add_dense_args:
add_dense_args = {}
if not add_conv_args:
add_conv_args = {}
layer_count = self._replace_all_bnn_layers(self.backbone, get_dense_args, get_conv_args, add_dense_args,
add_conv_args)
# rename layers of BNN model to prevent duplication of names
for value, param in self.backbone.parameters_and_names():
param.name = value
bnn_with_loss, self.bnn_loss_file = gain_bnn_with_loss(layer_count, self.backbone, self.loss_fn,
self.dnn_factor, self.bnn_factor)
bnn_optimizer = self._create_optimizer_with_bnn_params()
train_bnn_network = TrainOneStepCell(bnn_with_loss, bnn_optimizer)
return train_bnn_network
def transform_to_bnn_layer(self, dnn_layer_type, bnn_layer_type, get_args=None, add_args=None):
r"""
Transform a specific type of layers in DNN model to corresponding BNN layer.
Args:
dnn_layer_type (Cell): The type of DNN layer to be transformed to BNN layer. The optional values are
nn.Dense, nn.Conv2d.
bnn_layer_type (Cell): The type of BNN layer to be transformed to. The optional values are
DenseReparameterization, ConvReparameterization.
get_args (dict): The arguments gotten from the DNN layer. Default: None.
add_args (dict): The new arguments added to BNN layer. Default: None.
Returns:
Cell, a trainable model wrapped by TrainOneStepCell, whose sprcific type of layer is transformed to the
corresponding bayesian layer.
Examples:
>>> net = Net()
>>> criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> net_with_loss = WithLossCell(network, criterion)
>>> train_network = TrainOneStepCell(net_with_loss, optim)
>>> bnn_transformer = TransformToBNN(train_network, 60000, 0.1)
>>> train_bnn_network = bnn_transformer.transform_to_bnn_layer(Dense, DenseReparam)
"""
if dnn_layer_type.__name__ not in ["Dense", "Conv2d"]:
raise ValueError(' \'dnn_layer\'' + str(dnn_layer_type) +
', should be one of values in \'nn.Dense\', \'nn.Conv2d\'.')
if bnn_layer_type.__name__ not in ["DenseReparam", "ConvReparam"]:
raise ValueError(' \'bnn_layer\'' + str(bnn_layer_type) +
', should be one of values in \'DenseReparam\', \'ConvReparam\'.')
dnn_layer_type = getattr(layer, dnn_layer_type.__name__)
bnn_layer_type = getattr(bnn_layers, bnn_layer_type.__name__)
if not get_args:
if dnn_layer_type.__name__ == "Dense":
get_args = self._get_dense_args
else:
get_args = self._get_conv_args
if not add_args:
add_args = {}
layer_count = self._replace_specified_dnn_layers(self.backbone, dnn_layer_type, bnn_layer_type, get_args,
add_args)
for value, param in self.backbone.parameters_and_names():
param.name = value
bnn_with_loss, self.bnn_loss_file = gain_bnn_with_loss(layer_count, self.backbone, self.loss_fn,
self.dnn_factor, self.bnn_factor)
bnn_optimizer = self._create_optimizer_with_bnn_params()
train_bnn_network = TrainOneStepCell(bnn_with_loss, bnn_optimizer)
return train_bnn_network
def _get_dense_args(self, dense_layer):
"""Get arguments from dense layer."""
dense_args = {"in_channels": dense_layer.in_channels, "has_bias": dense_layer.has_bias,
"out_channels": dense_layer.out_channels, "activation": dense_layer.activation}
return dense_args
def _get_conv_args(self, conv_layer):
"""Get arguments from conv2d layer."""
conv_args = {"in_channels": conv_layer.in_channels, "out_channels": conv_layer.out_channels,
"pad_mode": conv_layer.pad_mode, "kernel_size": conv_layer.kernel_size,
"stride": conv_layer.stride, "has_bias": conv_layer.has_bias,
"padding": conv_layer.padding, "dilation": conv_layer.dilation,
"group": conv_layer.group}
return conv_args
def _create_optimizer_with_bnn_params(self):
"""Create new optimizer that contains bnn trainable parameters."""
name = self.optimizer.__class__.__name__
modules = optim.__all__
if name not in modules:
raise TypeError('The optimizer can be {}, but got {}'.format(str(modules), name))
optimizer = getattr(optim, name)
args = {'params': self.backbone.trainable_params()}
params = optimizer.__init__.__code__.co_varnames
_params = self.optimizer.__dict__['_params']
for param in params:
if param in _params:
args[param] = self.optimizer.__getattr__(param).data.asnumpy().tolist()
new_optimizer = optimizer(**args)
return new_optimizer
def _replace_all_bnn_layers(self, backbone, get_dense_args, get_conv_args, add_dense_args, add_conv_args):
"""Replace both dense layer and conv2d layer in DNN model to bayesian layers."""
count = 0
for name, cell in backbone.name_cells().items():
if isinstance(cell, nn.Dense):
dense_args = get_dense_args(cell)
new_layer = DenseReparam(**dense_args, **add_dense_args)
setattr(backbone, name, new_layer)
count += 1
elif isinstance(cell, nn.Conv2d):
conv_args = get_conv_args(cell)
new_layer = ConvReparam(**conv_args, **add_conv_args)
setattr(backbone, name, new_layer)
count += 1
else:
count += self._replace_all_bnn_layers(cell, get_dense_args, get_conv_args, add_dense_args,
add_conv_args)
return count
def _replace_specified_dnn_layers(self, backbone, dnn_layer, bnn_layer, get_args, add_args):
"""Convert a specific type of layers in DNN model to corresponding bayesian layers."""
count = 0
for name, cell in backbone.name_cells().items():
if isinstance(cell, dnn_layer):
args = get_args(cell)
new_layer = bnn_layer(**args, **add_args)
setattr(backbone, name, new_layer)
count += 1
else:
count += self._replace_specified_dnn_layers(cell, dnn_layer, bnn_layer, get_args, add_args)
return count