!4609 change unsupport to unsupported

Merge pull request !4609 from chenzhongming/new_master
This commit is contained in:
mindspore-ci-bot 2020-08-18 09:11:46 +08:00 committed by Gitee
commit 19192e75e3
29 changed files with 88 additions and 209 deletions

View File

@ -384,7 +384,7 @@ std::vector<std::pair<KernelGraphPtr, std::vector<AnfNodePtr>>> AscendControlPar
ret.emplace_back(target_graph, args);
}
} else {
MS_LOG(EXCEPTION) << "Unsupport call node: " << cnode->DebugString(5);
MS_LOG(EXCEPTION) << "Unsupported call node: " << cnode->DebugString(5);
}
return ret;
}

View File

@ -59,7 +59,7 @@ MPI_Op GetMpiOp(const std::string &op_type) {
return MPI_PROD;
}
RAISE_EXCEPTION_WITH_PARAM("unsupport op_type: ", op_type);
RAISE_EXCEPTION_WITH_PARAM("Unsupported op_type: ", op_type);
return MPI_SUM;
}

View File

@ -159,7 +159,7 @@ void convertDataItem2Scalar(const char *str_data_ptr, const string &tensor_type,
} else if (type_id == TypeId::kNumberTypeFloat64) {
PrintScalarToString<double>(str_data_ptr, tensor_type, buf);
} else {
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupport data type: " << tensor_type << ".";
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << tensor_type << ".";
}
}

View File

@ -49,7 +49,7 @@ int Cast::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vector<li
return 1;
}
if (kSupportDataType.find(input->data_type()) == kSupportDataType.end()) {
MS_LOG(ERROR) << "Unsupport input data type " << input->data_type();
MS_LOG(ERROR) << "Unsupported input data type " << input->data_type();
return 1;
}
if (GetDstT() != kNumberTypeFloat && GetDstT() != kNumberTypeFloat32) {

View File

@ -76,7 +76,7 @@ int CastFp16CPUKernel::DoCast(int thread_id) {
reinterpret_cast<float *>(output_data) + offset, data_num);
break;
default:
MS_LOG(ERROR) << "Unsupport input data type " << input->data_type();
MS_LOG(ERROR) << "Unsupported input data type " << input->data_type();
return RET_ERROR;
}
return RET_OK;

View File

@ -139,7 +139,7 @@ def _shape_check(shape_a, shape_b, shape_bias, src_dtype, trans_a, trans_b):
if [i for i in shape_bias[-2:]] != [m_shape, n_shape]:
raise RuntimeError("non broadcast bias shape must be same as output shape")
else:
raise RuntimeError("unsupport input shape now for batch bias case")
raise RuntimeError("Unsupported input shape now for batch bias case")
def _get_bias(shape_bias):

View File

@ -136,7 +136,7 @@ src_dtype: str
if [i for i in shape_bias[-2:]] != [m_shape, n_shape]:
raise RuntimeError("non broadcast bias shape must be same as output shape")
else:
raise RuntimeError("unsupport input shape now for batch bias case")
raise RuntimeError("Unsupported input shape now for batch bias case")
def _get_bias(shape_bias):

View File

@ -141,7 +141,7 @@ def _shape_check(shape_a, shape_b, shape_bias, src_dtype, trans_a, trans_b):
if [i for i in shape_bias[-2:]] != [m_shape, n_shape]:
raise RuntimeError("non broadcast bias shape must be same as output shape")
else:
raise RuntimeError("unsupport input shape now for batch bias case")
raise RuntimeError("unsupported input shape now for batch bias case")
def _get_bias(shape_bias):

View File

@ -427,7 +427,7 @@ class Profiler:
logger.error("Fail to get DEVICE_ID, use 0 instead.")
if device_target and device_target not in ["Davinci", "Ascend", "GPU"]:
msg = "Profiling: unsupport backend: %s" % device_target
msg = "Profiling: unsupported backend: %s" % device_target
raise RuntimeError(msg)
self._dev_id = dev_id

View File

@ -131,7 +131,7 @@ class Model:
def _check_kwargs(self, kwargs):
for arg in kwargs:
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
raise ValueError(f"Unsupport arg '{arg}'")
raise ValueError(f"Unsupported arg '{arg}'")
def _build_train_network(self):
"""Build train network"""

View File

@ -88,7 +88,7 @@ if __name__ == '__main__':
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported platform.")
dataset = create_dataset(cfg.data_path, 1)
batch_num = dataset.get_dataset_size()

View File

@ -467,7 +467,7 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="mask
if dataset == "coco":
image_files, image_anno_dict, masks, masks_shape = create_coco_label(is_training)
else:
print("Error unsupport other dataset")
print("Error unsupported other dataset")
return
maskrcnn_json = {

View File

@ -30,31 +30,31 @@ from src.mobilenetV2 import mobilenet_v2
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--platform', type=str, default=None, help='run platform')
parser.add_argument('--device_targe', type=str, default=None, help='run device_targe')
args_opt = parser.parse_args()
if __name__ == '__main__':
config_platform = None
config = None
net = None
if args_opt.platform == "Ascend":
config_platform = config_ascend
if args_opt.device_target == "Ascend":
config = config_ascend
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
device_id=device_id, save_graphs=False)
net = mobilenet_v2(num_classes=config_platform.num_classes, platform="Ascend")
elif args_opt.platform == "GPU":
config_platform = config_gpu
net = mobilenet_v2(num_classes=config.num_classes, device_target="Ascend")
elif args_opt.device_target == "GPU":
config = config_gpu
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU", save_graphs=False)
net = mobilenet_v2(num_classes=config_platform.num_classes, platform="GPU")
net = mobilenet_v2(num_classes=config.num_classes, device_target="GPU")
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_target.")
loss = nn.SoftmaxCrossEntropyWithLogits(
is_grad=False, sparse=True, reduction='mean')
if args_opt.platform == "Ascend":
if args_opt.device_target == "Ascend":
net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
@ -62,9 +62,9 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=False,
config=config_platform,
platform=args_opt.platform,
batch_size=config_platform.batch_size)
config=config,
device_target=args_opt.device_target,
batch_size=config.batch_size)
step_size = dataset.get_dataset_size()
if args_opt.checkpoint_path:

View File

@ -15,8 +15,8 @@
# ============================================================================
if [ $# != 3 ]
then
echo "Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH] \
GPU: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH]"
echo "Ascend: sh run_infer.sh [DEVICE_TARGET] [DATASET_PATH] [CHECKPOINT_PATH] \
GPU: sh run_infer.sh [DEVICE_TARGET] [DATASET_PATH] [CHECKPOINT_PATH]"
exit 1
fi
@ -49,7 +49,7 @@ cd ../eval || exit
# luanch
python ${BASEPATH}/../eval.py \
--platform=$1 \
--device_target=$1 \
--dataset_path=$2 \
--checkpoint_path=$3 \
&> ../infer.log & # dataset val folder path

View File

@ -43,7 +43,7 @@ run_ascend()
--training_script=${BASEPATH}/../train.py \
--dataset_path=$5 \
--pre_trained=$6 \
--platform=$1 &> ../train.log & # dataset train folder
--device_target=$1 &> ../train.log & # dataset train folder
}
run_gpu()
@ -73,7 +73,7 @@ run_gpu()
mpirun -n $2 --allow-run-as-root \
python ${BASEPATH}/../train.py \
--dataset_path=$4 \
--platform=$1 \
--device_target=$1 \
&> ../train.log & # dataset train folder
}
@ -91,6 +91,6 @@ if [ $1 = "Ascend" ] ; then
elif [ $1 = "GPU" ] ; then
run_gpu "$@"
else
echo "Unsupported platform."
echo "Unsupported device_target."
fi;

View File

@ -21,7 +21,7 @@ import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch_size=32):
def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32):
"""
create a train or eval dataset
@ -34,7 +34,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
Returns:
dataset
"""
if platform == "Ascend":
if device_target == "Ascend":
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
@ -42,7 +42,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
elif device_target == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
@ -50,7 +50,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_target.")
resize_height = config.image_height
resize_width = config.image_width

View File

@ -119,15 +119,15 @@ class ConvBNReLU(nn.Cell):
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, platform, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
def __init__(self, device_target, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
if groups == 1:
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding)
else:
if platform == "Ascend":
if device_target == "Ascend":
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
elif platform == "GPU":
elif device_target == "GPU":
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride,
group=in_planes, pad_mode='pad', padding=padding)
@ -156,7 +156,7 @@ class InvertedResidual(nn.Cell):
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, platform, inp, oup, stride, expand_ratio):
def __init__(self, device_target, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
@ -165,10 +165,10 @@ class InvertedResidual(nn.Cell):
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(platform, inp, hidden_dim, kernel_size=1))
layers.append(ConvBNReLU(device_target, inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(platform, hidden_dim, hidden_dim,
ConvBNReLU(device_target, hidden_dim, hidden_dim,
stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1,
@ -204,7 +204,7 @@ class MobileNetV2(nn.Cell):
>>> MobileNetV2(num_classes=1000)
"""
def __init__(self, platform, num_classes=1000, width_mult=1.,
def __init__(self, device_target, num_classes=1000, width_mult=1.,
has_dropout=False, inverted_residual_setting=None, round_nearest=8):
super(MobileNetV2, self).__init__()
block = InvertedResidual
@ -227,16 +227,16 @@ class MobileNetV2(nn.Cell):
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(platform, 3, input_channel, stride=2)]
features = [ConvBNReLU(device_target, 3, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(platform, input_channel, output_channel, stride, expand_ratio=t))
features.append(block(device_target, input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(platform, input_channel, self.out_channels, kernel_size=1))
features.append(ConvBNReLU(device_target, input_channel, self.out_channels, kernel_size=1))
# make it nn.CellList
self.features = nn.SequentialCell(features)
# mobilenet head

View File

@ -49,10 +49,10 @@ de.config.set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
parser.add_argument('--platform', type=str, default=None, help='run platform')
parser.add_argument('--device_targe', type=str, default=None, help='run device_targe')
args_opt = parser.parse_args()
if args_opt.platform == "Ascend":
if args_opt.device_targe == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
rank_id = int(os.getenv('RANK_ID'))
rank_size = int(os.getenv('RANK_SIZE'))
@ -61,7 +61,7 @@ if args_opt.platform == "Ascend":
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.platform == "GPU":
elif args_opt.device_targe == "GPU":
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU",
save_graphs=False)
@ -161,13 +161,13 @@ class Monitor(Callback):
if __name__ == '__main__':
if args_opt.platform == "GPU":
if args_opt.device_targe == "GPU":
# train on gpu
print("train args: ", args_opt)
print("cfg: ", config_gpu)
# define network
net = mobilenet_v2(num_classes=config_gpu.num_classes, platform="GPU")
net = mobilenet_v2(num_classes=config_gpu.num_classes, device_targe="GPU")
# define loss
if config_gpu.label_smooth > 0:
loss = CrossEntropyWithLabelSmooth(smooth_factor=config_gpu.label_smooth,
@ -179,7 +179,7 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config_gpu,
platform=args_opt.platform,
device_targe=args_opt.device_targe,
repeat_num=1,
batch_size=config_gpu.batch_size)
step_size = dataset.get_dataset_size()
@ -216,7 +216,7 @@ if __name__ == '__main__':
# begin train
model.train(epoch_size, dataset, callbacks=cb)
print("============== End Training ==============")
elif args_opt.platform == "Ascend":
elif args_opt.device_targe == "Ascend":
# train on ascend
print("train args: ", args_opt, "\ncfg: ", config_ascend,
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
@ -228,7 +228,7 @@ if __name__ == '__main__':
init()
epoch_size = config_ascend.epoch_size
net = mobilenet_v2(num_classes=config_ascend.num_classes, platform="Ascend")
net = mobilenet_v2(num_classes=config_ascend.num_classes, device_targe="Ascend")
net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
@ -242,7 +242,7 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config_ascend,
platform=args_opt.platform,
device_targe=args_opt.device_targe,
repeat_num=1,
batch_size=config_ascend.batch_size)
step_size = dataset.get_dataset_size()
@ -276,4 +276,4 @@ if __name__ == '__main__':
cb += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=cb)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_targe.")

View File

@ -61,7 +61,7 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupport device_target.")
raise ValueError("Unsupported device_target.")
resize_height = config.image_height

View File

@ -206,3 +206,5 @@ if __name__ == '__main__':
train_on_ascend()
elif args_opt.device_target == "GPU":
train_on_gpu()
else:
raise ValueError("Unsupported device target.")

View File

@ -30,29 +30,29 @@ from src.mobilenetV3 import mobilenet_v3_large
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--platform', type=str, default=None, help='run platform')
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
args_opt = parser.parse_args()
if __name__ == '__main__':
config_platform = None
if args_opt.platform == "Ascend":
config_platform = config_ascend
config = None
if args_opt.device_target == "Ascend":
config = config_ascend
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.platform == "GPU":
config_platform = config_gpu
elif args_opt.device_target == "GPU":
config = config_gpu
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU", save_graphs=False)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_target.")
loss = nn.SoftmaxCrossEntropyWithLogits(
is_grad=False, sparse=True, reduction='mean')
net = mobilenet_v3_large(num_classes=config_platform.num_classes)
net = mobilenet_v3_large(num_classes=config.num_classes)
if args_opt.platform == "Ascend":
if args_opt.device_target == "Ascend":
net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
@ -60,9 +60,9 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=False,
config=config_platform,
platform=args_opt.platform,
batch_size=config_platform.batch_size)
config=config,
device_target=args_opt.device_target,
batch_size=config.batch_size)
step_size = dataset.get_dataset_size()
if args_opt.checkpoint_path:

View File

@ -15,8 +15,7 @@
# ============================================================================
if [ $# != 3 ]
then
echo "Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH] \
GPU: sh run_infer.sh [PLATFORM] [DATASET_PATH] [CHECKPOINT_PATH]"
echo "GPU: sh run_infer.sh [DEVICE_TARGET] [DATASET_PATH] [CHECKPOINT_PATH]"
exit 1
fi
@ -49,7 +48,7 @@ cd ../eval || exit
# luanch
python ${BASEPATH}/../eval.py \
--platform=$1 \
--device_target=$1 \
--dataset_path=$2 \
--checkpoint_path=$3 \
&> ../infer.log & # dataset val folder path

View File

@ -13,36 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
run_ascend()
{
if [ $2 -lt 1 ] && [ $2 -gt 8 ]
then
echo "error: DEVICE_NUM=$2 is not in (1-8)"
exit 1
fi
if [ ! -d $5 ]
then
echo "error: DATASET_PATH=$5 is not a directory"
exit 1
fi
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
if [ -d "../train" ];
then
rm -rf ../train
fi
mkdir ../train
cd ../train || exit
python ${BASEPATH}/../src/launch.py \
--nproc_per_node=$2 \
--visible_devices=$4 \
--server_id=$3 \
--training_script=${BASEPATH}/../train.py \
--dataset_path=$5 \
--platform=$1 &> ../train.log & # dataset train folder
}
run_gpu()
{
@ -71,24 +41,21 @@ run_gpu()
mpirun -n $2 --allow-run-as-root \
python ${BASEPATH}/../train.py \
--dataset_path=$4 \
--platform=$1 \
--device_target=$1 \
&> ../train.log & # dataset train folder
}
if [ $# -gt 5 ] || [ $# -lt 4 ]
then
echo "Usage:\n \
Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
GPU: sh run_train.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]\n \
"
exit 1
fi
if [ $1 = "Ascend" ] ; then
run_ascend "$@"
elif [ $1 = "GPU" ] ; then
if [ $1 = "GPU" ] ; then
run_gpu "$@"
else
echo "not support platform"
echo "Unsupported device_target"
fi;

View File

@ -17,24 +17,6 @@ network config setting, will be used in train.py and eval.py
"""
from easydict import EasyDict as ed
config_ascend = ed({
"num_classes": 1000,
"image_height": 224,
"image_width": 224,
"batch_size": 256,
"epoch_size": 200,
"warmup_epochs": 4,
"lr": 0.4,
"momentum": 0.9,
"weight_decay": 4e-5,
"label_smooth": 0.1,
"loss_scale": 1024,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 200,
"save_checkpoint_path": "./checkpoint",
})
config_gpu = ed({
"num_classes": 1000,
"image_height": 224,

View File

@ -15,14 +15,13 @@
"""
create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch_size=32):
def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32):
"""
create a train or eval dataset
@ -35,15 +34,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
Returns:
dataset
"""
if platform == "Ascend":
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
if device_target == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
@ -51,7 +42,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
else:
ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_target.")
resize_height = config.image_height
resize_width = config.image_width

View File

@ -22,7 +22,6 @@ import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import nn
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.nn.loss.loss import _Loss
@ -38,7 +37,7 @@ from mindspore.communication.management import init, get_group_size, get_rank
from src.dataset import create_dataset
from src.lr_generator import get_lr
from src.config import config_gpu, config_ascend
from src.config import config_gpu
from src.mobilenetV3 import mobilenet_v3_large
random.seed(1)
@ -48,10 +47,10 @@ de.config.set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
parser.add_argument('--platform', type=str, default=None, help='run platform')
parser.add_argument('--device_target', type=str, default=None, help='run device_target')
args_opt = parser.parse_args()
if args_opt.platform == "Ascend":
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
rank_id = int(os.getenv('RANK_ID'))
rank_size = int(os.getenv('RANK_SIZE'))
@ -61,7 +60,7 @@ if args_opt.platform == "Ascend":
device_target="Ascend",
device_id=device_id,
save_graphs=False)
elif args_opt.platform == "GPU":
elif args_opt.device_target == "GPU":
context.set_context(mode=context.GRAPH_MODE,
device_target="GPU",
save_graphs=False)
@ -70,7 +69,7 @@ elif args_opt.platform == "GPU":
parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
else:
raise ValueError("Unsupport platform.")
raise ValueError("Unsupported device_target.")
class CrossEntropyWithLabelSmooth(_Loss):
@ -161,7 +160,7 @@ class Monitor(Callback):
if __name__ == '__main__':
if args_opt.platform == "GPU":
if args_opt.device_target == "GPU":
# train on gpu
print("train args: ", args_opt)
print("cfg: ", config_gpu)
@ -180,7 +179,7 @@ if __name__ == '__main__':
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config_gpu,
platform=args_opt.platform,
device_target=args_opt.device_target,
repeat_num=1,
batch_size=config_gpu.batch_size)
step_size = dataset.get_dataset_size()
@ -213,64 +212,3 @@ if __name__ == '__main__':
cb += [ckpt_cb]
# begine train
model.train(epoch_size, dataset, callbacks=cb)
elif args_opt.platform == "Ascend":
# train on ascend
print("train args: ", args_opt, "\ncfg: ", config_ascend,
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size))
if run_distribute:
context.set_auto_parallel_context(device_num=rank_size, parallel_mode=ParallelMode.DATA_PARALLEL,
parameter_broadcast=True, mirror_mean=True)
auto_parallel_context().set_all_reduce_fusion_split_indices([140])
init()
epoch_size = config_ascend.epoch_size
net = mobilenet_v3_large(num_classes=config_ascend.num_classes)
net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
cell.to_float(mstype.float32)
if config_ascend.label_smooth > 0:
loss = CrossEntropyWithLabelSmooth(
smooth_factor=config_ascend.label_smooth, num_classes=config.num_classes)
else:
loss = SoftmaxCrossEntropyWithLogits(
is_grad=False, sparse=True, reduction='mean')
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=True,
config=config_ascend,
platform=args_opt.platform,
repeat_num=1,
batch_size=config_ascend.batch_size)
step_size = dataset.get_dataset_size()
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
load_param_into_net(net, param_dict)
loss_scale = FixedLossScaleManager(
config_ascend.loss_scale, drop_overflow_update=False)
lr = Tensor(get_lr(global_step=0,
lr_init=0,
lr_end=0,
lr_max=config_ascend.lr,
warmup_epochs=config_ascend.warmup_epochs,
total_epochs=epoch_size,
steps_per_epoch=step_size))
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_ascend.momentum,
config_ascend.weight_decay, config_ascend.loss_scale)
model = Model(net, loss_fn=loss, optimizer=opt,
loss_scale_manager=loss_scale)
cb = None
if rank_id == 0:
cb = [Monitor(lr_init=lr.asnumpy())]
if config_ascend.save_checkpoint:
config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size,
keep_checkpoint_max=config_ascend.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(
prefix="mobilenetV3", directory=config_ascend.save_checkpoint_path, config=config_ck)
cb += [ckpt_cb]
model.train(epoch_size, dataset, callbacks=cb)
else:
raise Exception

View File

@ -176,7 +176,7 @@ class Model:
def _check_kwargs(self, kwargs):
for arg in kwargs:
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
raise ValueError(f"Unsupport arg '{arg}'")
raise ValueError(f"Unsupported arg '{arg}'")
def _build_train_network(self):
"""Build train network"""

View File

@ -1085,7 +1085,7 @@ Status DvppJsonConfigParser::InitWithJsonConfigImp(const std::string &json_confi
return FAILED;
}
} else {
MSI_LOG_ERROR << "Unsupport op name " << op_name << ", expect resize, crop or crop_and_paste";
MSI_LOG_ERROR << "Unsupported op name " << op_name << ", expect resize, crop or crop_and_paste";
return FAILED;
}
return SUCCESS;

View File

@ -169,7 +169,7 @@ class Model:
def _check_kwargs(self, kwargs):
for arg in kwargs:
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
raise ValueError(f"Unsupport arg '{arg}'")
raise ValueError(f"Unsupported arg '{arg}'")
def _build_train_network(self):
"""Build train network"""