!5063 modify sgd and momentum and WithGradCell comments

Merge pull request !5063 from lijiaqi/momentum_and_sgd
This commit is contained in:
mindspore-ci-bot 2020-08-24 20:23:23 +08:00 committed by Gitee
commit 15ae3702f9
3 changed files with 9 additions and 9 deletions

View File

@ -56,12 +56,12 @@ class Momentum(Optimizer):
.. math:: .. math::
v_{t} = v_{t-1} \ast u + gradients v_{t} = v_{t-1} \ast u + gradients
If use_nesterov is True: If use_nesterov is True:
.. math:: .. math::
p_{t} = p_{t-1} - (grad \ast lr + v_{t} \ast u \ast lr) p_{t} = p_{t-1} - (grad \ast lr + v_{t} \ast u \ast lr)
If use_nesterov is Flase: If use_nesterov is Flase:
.. math:: .. math::
p_{t} = p_{t-1} - lr \ast v_{t} p_{t} = p_{t-1} - lr \ast v_{t}
Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively. Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively.

View File

@ -49,12 +49,12 @@ class SGD(Optimizer):
.. math:: .. math::
v_{t+1} = u \ast v_{t} + gradient \ast (1-dampening) v_{t+1} = u \ast v_{t} + gradient \ast (1-dampening)
If nesterov is True: If nesterov is True:
.. math:: .. math::
p_{t+1} = p_{t} - lr \ast (gradient + u \ast v_{t+1}) p_{t+1} = p_{t} - lr \ast (gradient + u \ast v_{t+1})
If nesterov is Flase: If nesterov is Flase:
.. math:: .. math::
p_{t+1} = p_{t} - lr \ast v_{t+1} p_{t+1} = p_{t} - lr \ast v_{t+1}
To be noticed, for the first step, v_{t+1} = gradient To be noticed, for the first step, v_{t+1} = gradient

View File

@ -82,7 +82,7 @@ class WithGradCell(Cell):
Wraps the network with backward cell to compute gradients. A network with a loss function is necessary Wraps the network with backward cell to compute gradients. A network with a loss function is necessary
as argument. If loss function in None, the network must be a wrapper of network and loss function. This as argument. If loss function in None, the network must be a wrapper of network and loss function. This
Cell accepts *inputs as inputs and returns gradients for each trainable parameter. Cell accepts '*inputs' as inputs and returns gradients for each trainable parameter.
Note: Note:
Run in PyNative mode. Run in PyNative mode.