forked from mindspore-Ecosystem/mindspore
add formula and result
This commit is contained in:
parent
fad40466c6
commit
131b3e3933
|
@ -481,6 +481,19 @@ class Conv2dTranspose(_Conv):
|
||||||
|
|
||||||
Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||||
|
|
||||||
|
If the 'pad_mode' is set to be "pad", the height and width of output are defined as:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
H_{out} = (H_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||||
|
(\text{ks_h} - 1) + 1
|
||||||
|
|
||||||
|
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||||
|
(\text{ks_w} - 1) + 1
|
||||||
|
|
||||||
|
where :math:`\text{ks_h}` is the height of the convolution kernel and :math:`\text{ks_w}` is the width
|
||||||
|
of the convolution kernel.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
in_channels (int): The number of channels in the input space.
|
in_channels (int): The number of channels in the input space.
|
||||||
out_channels (int): The number of channels in the output space.
|
out_channels (int): The number of channels in the output space.
|
||||||
|
@ -529,9 +542,10 @@ class Conv2dTranspose(_Conv):
|
||||||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
|
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
|
||||||
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
|
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
|
||||||
>>> net(input)
|
>>> net(input).shape
|
||||||
|
(1, 64, 19, 53)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
|
@ -654,6 +668,15 @@ class Conv1dTranspose(_Conv):
|
||||||
|
|
||||||
Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||||
|
|
||||||
|
If the 'pad_mode' is set to be "pad", the width of output is defined as:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
|
||||||
|
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||||
|
(\text{ks_w} - 1) + 1
|
||||||
|
|
||||||
|
where :math:`\text{ks_w}` is the width of the convolution kernel.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
in_channels (int): The number of channels in the input space.
|
in_channels (int): The number of channels in the input space.
|
||||||
out_channels (int): The number of channels in the output space.
|
out_channels (int): The number of channels in the output space.
|
||||||
|
@ -694,9 +717,10 @@ class Conv1dTranspose(_Conv):
|
||||||
Tensor of shape :math:`(N, C_{out}, W_{out})`.
|
Tensor of shape :math:`(N, C_{out}, W_{out})`.
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
|
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
|
||||||
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32)
|
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32)
|
||||||
>>> net(input)
|
>>> net(input).shape
|
||||||
|
(1, 64, 53)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
|
|
Loading…
Reference in New Issue