forked from mindspore-Ecosystem/mindspore
add formula and result
This commit is contained in:
parent
fad40466c6
commit
131b3e3933
|
@ -481,6 +481,19 @@ class Conv2dTranspose(_Conv):
|
|||
|
||||
Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||
|
||||
If the 'pad_mode' is set to be "pad", the height and width of output are defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
H_{out} = (H_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||
(\text{ks_h} - 1) + 1
|
||||
|
||||
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||
(\text{ks_w} - 1) + 1
|
||||
|
||||
where :math:`\text{ks_h}` is the height of the convolution kernel and :math:`\text{ks_w}` is the width
|
||||
of the convolution kernel.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of channels in the input space.
|
||||
out_channels (int): The number of channels in the output space.
|
||||
|
@ -529,9 +542,10 @@ class Conv2dTranspose(_Conv):
|
|||
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
||||
|
||||
Examples:
|
||||
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
|
||||
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
|
||||
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
|
||||
>>> net(input)
|
||||
>>> net(input).shape
|
||||
(1, 64, 19, 53)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -654,6 +668,15 @@ class Conv1dTranspose(_Conv):
|
|||
|
||||
Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number.
|
||||
|
||||
If the 'pad_mode' is set to be "pad", the width of output is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times
|
||||
(\text{ks_w} - 1) + 1
|
||||
|
||||
where :math:`\text{ks_w}` is the width of the convolution kernel.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of channels in the input space.
|
||||
out_channels (int): The number of channels in the output space.
|
||||
|
@ -694,9 +717,10 @@ class Conv1dTranspose(_Conv):
|
|||
Tensor of shape :math:`(N, C_{out}, W_{out})`.
|
||||
|
||||
Examples:
|
||||
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
|
||||
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad')
|
||||
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32)
|
||||
>>> net(input)
|
||||
>>> net(input).shape
|
||||
(1, 64, 53)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
|
Loading…
Reference in New Issue