!2010 fix operator issues for tuple_to_array and cast

Merge pull request !2010 from wangqiuliang/fix-tuple-to-array-issue
This commit is contained in:
mindspore-ci-bot 2020-06-15 15:38:47 +08:00 committed by Gitee
commit 11f5f88021
7 changed files with 126 additions and 20 deletions

View File

@ -15,7 +15,7 @@
"""Parameter for cell."""
import numbers
from copy import copy, deepcopy
from copy import copy
from mindspore import context
from . import dtype as mstype
from .initializer import initializer, Initializer
@ -191,25 +191,16 @@ class Parameter:
return self.default_input
def __add__(self, other):
res = deepcopy(self)
res.default_input = res.default_input + other
return res
return self.default_input + other
def __sub__(self, other):
res = deepcopy(self)
res.default_input = res.default_input - other
return res
return self.default_input - other
def __mul__(self, other):
res = deepcopy(self)
default_input = res.default_input * other
res.default_input = Tensor(default_input.asnumpy().copy())
return res
return self.default_input * other
def __truediv__(self, other):
res = deepcopy(self)
res.default_input = res.default_input / other
return res
return self.default_input / other
def __setitem__(self, index, value):
return self

View File

@ -202,6 +202,7 @@ class Cell:
if context.get_context("mode") == context.GRAPH_MODE:
out = self.compile_and_run(*inputs)
return out
self.init_parameters_data()
orign_grad = []
if self.requires_grad is True:
_pynative_exec.set_grad_flag(True)
@ -254,8 +255,11 @@ class Cell:
value.update_parameters_name(name + '.')
cells[name] = value
elif params and name in params:
if value is not None:
if isinstance(value, Tensor) and self._params[name] is not None:
self._params[name].set_parameter_data(value)
elif value is not None:
raise TypeError("Expected type in (Parameter, ParameterTuple), but got {}.".format(type(value)))
else:
self.insert_param_to_cell(name, None)
elif cells and name in cells:
if value is not None:

View File

@ -30,7 +30,7 @@ from ...common import dtype as mstype
from ...common.tensor import Tensor
from ..operations.math_ops import _infer_shape_reduce
from .._utils import get_concat_offset
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register, _run_op
from ..._c_expression import signature_rw as sig_rw
from ..._c_expression import signature_kind as sig_kind
from ..._c_expression import signature_dtype as sig_dtype
@ -983,9 +983,14 @@ class TupleToArray(PrimitiveWithInfer):
ret = np.array(x, np.int32)
else:
ret = np.array(x, np.float32)
return Tensor(ret)
def __call__(self, x):
args = list()
if isinstance(x, range):
args.append(tuple(x))
return _run_op(self, self.name, args)
class ScalarToArray(PrimitiveWithInfer):
"""

View File

@ -0,0 +1,31 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.ops.operations as P
from mindspore import context, Tensor
def test_cast():
""" tests cast for same dtype"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_x = Tensor(input_np)
type_dst = ms.float32
cast = P.Cast()
result = cast(input_x, type_dst)
assert result.dtype() == type_dst

View File

@ -52,11 +52,11 @@ class TestAdam():
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
def test_construct(self):
with pytest.raises(TypeError):
with pytest.raises(RuntimeError):
gradient = Tensor(np.zeros([1, 2, 3]))
adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
adam.construct(gradient)
adam(gradient)
class TestSGD():

View File

@ -0,0 +1,67 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_tensor_operation """
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore import context
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
def test_parameter_add():
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32)), name="ref")
y = Tensor(np.ones((3, 3)).astype(np.float32))
expect = np.ones((3, 3)).astype(np.float32) * 2
z = x + y
assert np.allclose(z.asnumpy(), expect)
def test_parameter_sub():
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
y = Tensor(np.ones((3, 3)).astype(np.float32))
expect = np.ones((3, 3)).astype(np.float32)
z = x - y
assert np.allclose(z.asnumpy(), expect)
def test_parameter_mul():
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
expect = np.ones((3, 3)).astype(np.float32) * 4
z = x * y
assert np.allclose(z.asnumpy(), expect)
def test_parameter_div():
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 8), name="ref")
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
expect = np.ones((3, 3)).astype(np.float32) * 4
z = x / y
assert np.allclose(z.asnumpy(), expect)
class ParameterNet(nn.Cell):
def __init__(self):
super(ParameterNet, self).__init__()
self.weight = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
def construct(self, x):
self.weight = x
def test_parameter_assign():
"""test parameter assign with tensor"""
input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 8.0]], np.float32))
net = ParameterNet()
net(input_x)
assert np.allclose(net.weight.data.asnumpy(), input_x.asnumpy())

View File

@ -31,6 +31,7 @@ from mindspore.common.api import ms_function
from mindspore.common.tensor import Tensor
from mindspore.ops.composite import core
from mindspore.ops.primitive import constexpr
from mindspore.ops import functional as F
from ..ut_filter import non_graph_engine
@ -427,3 +428,10 @@ def test_expr():
def tuple_len(x):
assert len(x) == 2
tuple_len(a)
def test_tuple_to_array():
""" test range tuple to array """
range_x = range(10)
res = F.tuple_to_array(range_x)
print(res)