forked from mindspore-Ecosystem/mindspore
!2010 fix operator issues for tuple_to_array and cast
Merge pull request !2010 from wangqiuliang/fix-tuple-to-array-issue
This commit is contained in:
commit
11f5f88021
|
@ -15,7 +15,7 @@
|
|||
|
||||
"""Parameter for cell."""
|
||||
import numbers
|
||||
from copy import copy, deepcopy
|
||||
from copy import copy
|
||||
from mindspore import context
|
||||
from . import dtype as mstype
|
||||
from .initializer import initializer, Initializer
|
||||
|
@ -191,25 +191,16 @@ class Parameter:
|
|||
return self.default_input
|
||||
|
||||
def __add__(self, other):
|
||||
res = deepcopy(self)
|
||||
res.default_input = res.default_input + other
|
||||
return res
|
||||
return self.default_input + other
|
||||
|
||||
def __sub__(self, other):
|
||||
res = deepcopy(self)
|
||||
res.default_input = res.default_input - other
|
||||
return res
|
||||
return self.default_input - other
|
||||
|
||||
def __mul__(self, other):
|
||||
res = deepcopy(self)
|
||||
default_input = res.default_input * other
|
||||
res.default_input = Tensor(default_input.asnumpy().copy())
|
||||
return res
|
||||
return self.default_input * other
|
||||
|
||||
def __truediv__(self, other):
|
||||
res = deepcopy(self)
|
||||
res.default_input = res.default_input / other
|
||||
return res
|
||||
return self.default_input / other
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
return self
|
||||
|
|
|
@ -202,6 +202,7 @@ class Cell:
|
|||
if context.get_context("mode") == context.GRAPH_MODE:
|
||||
out = self.compile_and_run(*inputs)
|
||||
return out
|
||||
self.init_parameters_data()
|
||||
orign_grad = []
|
||||
if self.requires_grad is True:
|
||||
_pynative_exec.set_grad_flag(True)
|
||||
|
@ -254,8 +255,11 @@ class Cell:
|
|||
value.update_parameters_name(name + '.')
|
||||
cells[name] = value
|
||||
elif params and name in params:
|
||||
if value is not None:
|
||||
if isinstance(value, Tensor) and self._params[name] is not None:
|
||||
self._params[name].set_parameter_data(value)
|
||||
elif value is not None:
|
||||
raise TypeError("Expected type in (Parameter, ParameterTuple), but got {}.".format(type(value)))
|
||||
else:
|
||||
self.insert_param_to_cell(name, None)
|
||||
elif cells and name in cells:
|
||||
if value is not None:
|
||||
|
|
|
@ -30,7 +30,7 @@ from ...common import dtype as mstype
|
|||
from ...common.tensor import Tensor
|
||||
from ..operations.math_ops import _infer_shape_reduce
|
||||
from .._utils import get_concat_offset
|
||||
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
|
||||
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register, _run_op
|
||||
from ..._c_expression import signature_rw as sig_rw
|
||||
from ..._c_expression import signature_kind as sig_kind
|
||||
from ..._c_expression import signature_dtype as sig_dtype
|
||||
|
@ -983,9 +983,14 @@ class TupleToArray(PrimitiveWithInfer):
|
|||
ret = np.array(x, np.int32)
|
||||
else:
|
||||
ret = np.array(x, np.float32)
|
||||
|
||||
return Tensor(ret)
|
||||
|
||||
def __call__(self, x):
|
||||
args = list()
|
||||
if isinstance(x, range):
|
||||
args.append(tuple(x))
|
||||
return _run_op(self, self.name, args)
|
||||
|
||||
|
||||
class ScalarToArray(PrimitiveWithInfer):
|
||||
"""
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import context, Tensor
|
||||
|
||||
|
||||
def test_cast():
|
||||
""" tests cast for same dtype"""
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
||||
input_x = Tensor(input_np)
|
||||
type_dst = ms.float32
|
||||
cast = P.Cast()
|
||||
result = cast(input_x, type_dst)
|
||||
assert result.dtype() == type_dst
|
|
@ -52,11 +52,11 @@ class TestAdam():
|
|||
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
|
||||
|
||||
def test_construct(self):
|
||||
with pytest.raises(TypeError):
|
||||
with pytest.raises(RuntimeError):
|
||||
gradient = Tensor(np.zeros([1, 2, 3]))
|
||||
adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
|
||||
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
|
||||
adam.construct(gradient)
|
||||
adam(gradient)
|
||||
|
||||
|
||||
class TestSGD():
|
||||
|
|
|
@ -0,0 +1,67 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test_tensor_operation """
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Parameter
|
||||
from mindspore import context
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
def test_parameter_add():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32)), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32))
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 2
|
||||
z = x + y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_sub():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32))
|
||||
expect = np.ones((3, 3)).astype(np.float32)
|
||||
z = x - y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_mul():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 4
|
||||
z = x * y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
def test_parameter_div():
|
||||
x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 8), name="ref")
|
||||
y = Tensor(np.ones((3, 3)).astype(np.float32) * 2)
|
||||
expect = np.ones((3, 3)).astype(np.float32) * 4
|
||||
z = x / y
|
||||
assert np.allclose(z.asnumpy(), expect)
|
||||
|
||||
class ParameterNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ParameterNet, self).__init__()
|
||||
self.weight = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref")
|
||||
|
||||
def construct(self, x):
|
||||
self.weight = x
|
||||
|
||||
def test_parameter_assign():
|
||||
"""test parameter assign with tensor"""
|
||||
input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 8.0]], np.float32))
|
||||
net = ParameterNet()
|
||||
net(input_x)
|
||||
assert np.allclose(net.weight.data.asnumpy(), input_x.asnumpy())
|
|
@ -31,6 +31,7 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops.composite import core
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.ops import functional as F
|
||||
from ..ut_filter import non_graph_engine
|
||||
|
||||
|
||||
|
@ -427,3 +428,10 @@ def test_expr():
|
|||
def tuple_len(x):
|
||||
assert len(x) == 2
|
||||
tuple_len(a)
|
||||
|
||||
|
||||
def test_tuple_to_array():
|
||||
""" test range tuple to array """
|
||||
range_x = range(10)
|
||||
res = F.tuple_to_array(range_x)
|
||||
print(res)
|
||||
|
|
Loading…
Reference in New Issue