!26126 MD Profiling - Add Start Stop Python UT

Merge pull request !26126 from cathwong/ckw_ut_prof_startstop
This commit is contained in:
i-robot 2021-11-18 14:05:00 +00:00 committed by Gitee
commit 117df75afc
1 changed files with 260 additions and 0 deletions

View File

@ -0,0 +1,260 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Test MindData Profiling Start and Stop Support
"""
import json
import os
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore._c_dataengine as cde
import mindspore.dataset.transforms.c_transforms as C
FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
DATASET_ROOT = "../data/dataset/testTFTestAllTypes/"
SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
# Add file name to rank id mapping so that each profiling file name is unique,
# to support parallel test execution
file_name_map_rank_id = {"test_profiling_early_stop": "0",
"test_profiling_delay_start": "1",
"test_profiling_start_start": "2",
"test_profiling_stop_stop": "3",
"test_profiling_stop_nostart": "4"}
class TestMindDataProfilingStartStop:
"""
Test MindData Profiling Manager Start-Stop Support
"""
def setup_class(self):
"""
Run once for the class
"""
self._PIPELINE_FILE = "./pipeline_profiling"
self._CPU_UTIL_FILE = "./minddata_cpu_utilization"
self._DATASET_ITERATOR_FILE = "./dataset_iterator_profiling"
def setup_method(self):
"""
Run before each test function.
"""
file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0]
file_id = file_name_map_rank_id[file_name]
self.pipeline_file = self._PIPELINE_FILE + "_" + file_id + ".json"
self.cpu_util_file = self._CPU_UTIL_FILE + "_" + file_id + ".json"
self.dataset_iterator_file = self._DATASET_ITERATOR_FILE + "_" + file_id + ".txt"
# Confirm MindData Profiling files do not yet exist
assert os.path.exists(self.pipeline_file) is False
assert os.path.exists(self.cpu_util_file) is False
assert os.path.exists(self.dataset_iterator_file) is False
# Set the MindData Profiling related environment variables
os.environ['RANK_ID'] = file_id
os.environ['DEVICE_ID'] = file_id
def teardown_method(self):
"""
Run after each test function.
"""
# Delete MindData profiling files generated from the test.
if os.path.exists(self.pipeline_file):
os.remove(self.pipeline_file)
if os.path.exists(self.cpu_util_file):
os.remove(self.cpu_util_file)
if os.path.exists(self.dataset_iterator_file):
os.remove(self.dataset_iterator_file)
# Disable MindData Profiling related environment variables
del os.environ['RANK_ID']
del os.environ['DEVICE_ID']
def confirm_pipeline_file(self, num_ops, op_list=None):
"""
Confirm pipeline JSON file with <num_ops> in the pipeline and the given optional list of ops
"""
with open(self.pipeline_file) as file1:
data = json.load(file1)
op_info = data["op_info"]
# Confirm ops in pipeline file
assert len(op_info) == num_ops
if op_list:
for i in range(num_ops):
assert op_info[i]["op_type"] in op_list
def confirm_cpuutil_file(self, num_pipeline_ops):
"""
Confirm CPU utilization JSON file with <num_pipeline_ops> in the pipeline
"""
with open(self.cpu_util_file) as file1:
data = json.load(file1)
op_info = data["op_info"]
assert len(op_info) == num_pipeline_ops
def confirm_dataset_iterator_file(self):
"""
Confirm dataset iterator file exists
"""
assert os.path.exists(self.dataset_iterator_file)
def test_profiling_early_stop(self):
"""
Test MindData Profiling with Early Stop; profile for some iterations and then stop profiling
"""
def source1():
for i in range(8000):
yield (np.array([i]),)
# Get instance pointer for MindData profiling manager
md_profiler = cde.GlobalContext.profiling_manager()
# Initialize MindData profiling manager
md_profiler.init()
# Start MindData Profiling
md_profiler.start()
# Create this basic and common pipeline
# Leaf/Source-Op -> Map -> Batch
data1 = ds.GeneratorDataset(source1, ["col1"])
type_cast_op = C.TypeCast(mstype.int32)
data1 = data1.map(operations=type_cast_op, input_columns="col1")
data1 = data1.batch(16)
num_iter = 0
# Note: If create_dict_iterator() is called with num_epochs>1, then EpochCtrlOp is added to the pipeline
for _ in data1.create_dict_iterator(num_epochs=2):
if num_iter == 400:
# Stop MindData Profiling and Save MindData Profiling Output
md_profiler.stop()
md_profiler.save(os.getcwd())
num_iter += 1
assert num_iter == 500
# Confirm the content of the profiling files, including 4 ops in the pipeline JSON file
self.confirm_pipeline_file(4, ["GeneratorOp", "BatchOp", "MapOp", "EpochCtrlOp"])
self.confirm_cpuutil_file(4)
self.confirm_dataset_iterator_file()
def test_profiling_delay_start(self):
"""
Test MindData Profiling with Delayed Start; profile for subset of iterations
"""
def source1():
for i in range(8000):
yield (np.array([i]),)
# Get instance pointer for MindData profiling manager
md_profiler = cde.GlobalContext.profiling_manager()
# Initialize MindData profiling manager
md_profiler.init()
# Create this basic and common pipeline
# Leaf/Source-Op -> Map -> Batch
data1 = ds.GeneratorDataset(source1, ["col1"])
type_cast_op = C.TypeCast(mstype.int32)
data1 = data1.map(operations=type_cast_op, input_columns="col1")
data1 = data1.batch(16)
num_iter = 0
# Note: If create_dict_iterator() is called with num_epochs=1, then EpochCtrlOp is not added to the pipeline
for _ in data1.create_dict_iterator(num_epochs=1):
if num_iter == 5:
# Start MindData Profiling
md_profiler.start()
elif num_iter == 400:
# Stop MindData Profiling and Save MindData Profiling Output
md_profiler.stop()
md_profiler.save(os.getcwd())
num_iter += 1
assert num_iter == 500
# Confirm the content of the profiling files, including 3 ops in the pipeline JSON file
self.confirm_pipeline_file(3, ["GeneratorOp", "BatchOp", "MapOp"])
self.confirm_cpuutil_file(3)
self.confirm_dataset_iterator_file()
def test_profiling_start_start(self):
"""
Test MindData Profiling with Start followed by Start - user error scenario
"""
# Get instance pointer for MindData profiling manager
md_profiler = cde.GlobalContext.profiling_manager()
# Initialize MindData profiling manager
md_profiler.init()
# Start MindData Profiling
md_profiler.start()
with pytest.raises(RuntimeError) as info:
# Reissue Start MindData Profiling
md_profiler.start()
assert "MD ProfilingManager is already running." in str(info)
# Stop MindData Profiling
md_profiler.stop()
def test_profiling_stop_stop(self):
"""
Test MindData Profiling with Stop followed by Stop - user warning scenario
"""
# Get instance pointer for MindData profiling manager
md_profiler = cde.GlobalContext.profiling_manager()
# Initialize MindData profiling manager
md_profiler.init()
# Start MindData Profiling
md_profiler.start()
# Stop MindData Profiling and Save MindData Profiling Output
md_profiler.stop()
md_profiler.save(os.getcwd())
# Reissue Stop MindData Profiling
# A warning "MD ProfilingManager had already stopped" is produced.
md_profiler.stop()
def test_profiling_stop_nostart(self):
"""
Test MindData Profiling with Stop not without prior Start - user error scenario
"""
# Get instance pointer for MindData profiling manager
md_profiler = cde.GlobalContext.profiling_manager()
# Initialize MindData profiling manager
md_profiler.init()
with pytest.raises(RuntimeError) as info:
# Stop MindData Profiling - without prior Start()
md_profiler.stop()
assert "MD ProfilingManager has not started yet." in str(info)