diff --git a/tests/st/control/test_multigraph_sink.py b/tests/st/control/test_multigraph_sink.py index 1b48a1b905c..9f7d24a80af 100644 --- a/tests/st/control/test_multigraph_sink.py +++ b/tests/st/control/test_multigraph_sink.py @@ -21,7 +21,7 @@ from mindspore.common import ms_function from mindspore.common.tensor import Tensor -def setup_module(module): +def setup_module(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") @@ -33,7 +33,7 @@ c5 = Tensor([14], mstype.int32) @ms_function -def simple_if(x, y, z): +def simple_if(x, y): if x < y: x = x + 1 else: @@ -43,7 +43,7 @@ def simple_if(x, y, z): @ms_function -def if_by_if(x, y, z): +def if_by_if(x, y): if x < y: x = x + 1 if y > x: @@ -66,7 +66,7 @@ def if_in_if(x, y, z): @ms_function -def simple_while(x, y, z): +def simple_while(x, y): y = y + 4 while x < y: x = x + 1 @@ -137,13 +137,13 @@ def while_in_while_in_while(x, y, z): @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_simple_if(): - output = simple_if(c1, c2, c3) + output = simple_if(c1, c2) expect = Tensor([6], mstype.int32) assert output == expect def test_if_by_if(): - output = if_by_if(c1, c2, c3) + output = if_by_if(c1, c2) expect = Tensor([8], mstype.int32) assert output == expect @@ -163,7 +163,7 @@ def test_if_in_if(): @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_simple_while(): - output = simple_while(c1, c2, c3) + output = simple_while(c1, c2) expect = Tensor([21], mstype.int32) assert output == expect diff --git a/tests/st/control/test_while.py b/tests/st/control/test_while.py index 548c866a202..94e39c411cc 100644 --- a/tests/st/control/test_while.py +++ b/tests/st/control/test_while.py @@ -18,7 +18,7 @@ from mindspore.common import dtype as mstype @ms_function -def t1_while(x, y, z): +def t1_while(x, y): y = y + 4 while x < y: x = x + 1 @@ -30,9 +30,8 @@ def test_net(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") c1 = Tensor([2], mstype.int32) c2 = Tensor([14], mstype.int32) - c3 = Tensor([1], mstype.int32) expect = Tensor([21], mstype.int32) - ret = t1_while(c1, c2, c3) + ret = t1_while(c1, c2) assert ret == expect diff --git a/tests/st/mem_reuse/check_file.py b/tests/st/mem_reuse/check_file.py index 5359ccea3e6..524079db648 100644 --- a/tests/st/mem_reuse/check_file.py +++ b/tests/st/mem_reuse/check_file.py @@ -19,8 +19,8 @@ curr_path = os.path.abspath(os.curdir) file_memreuse = curr_path + "/mem_reuse_check/memreuse.ir" file_normal = curr_path + "/mem_reuse_check/normal_mem.ir" checker = os.path.exists(file_memreuse) -assert checker == True +assert checker, True checker = os.path.exists(file_normal) -assert checker == True +assert checker, True checker = filecmp.cmp(file_memreuse, file_normal) -assert checker == True +assert checker, True diff --git a/tests/st/mem_reuse/resnet.py b/tests/st/mem_reuse/resnet.py index f4e2d491e55..19843efa707 100644 --- a/tests/st/mem_reuse/resnet.py +++ b/tests/st/mem_reuse/resnet.py @@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell): def __init__(self, in_channels, out_channels, - stride=1, - down_sample=False): + stride=1): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion @@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell): class MakeLayer0(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer0, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True) self.b = block(out_channels, out_channels, stride=stride) @@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell): class MakeLayer1(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer1, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell): class MakeLayer2(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer2, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell): class MakeLayer3(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer3, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell): class ResNet(nn.Cell): - def __init__(self, block, layer_num, num_classes=100, batch_size=32): + def __init__(self, block, num_classes=100, batch_size=32): super(ResNet, self).__init__() self.batch_size = batch_size self.num_classes = num_classes @@ -271,10 +270,10 @@ class ResNet(nn.Cell): self.relu = P.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") - self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1) - self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2) - self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2) - self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2) + self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1) + self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2) + self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2) + self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2) self.pool = P.ReduceMean(keep_dims=True) self.squeeze = P.Squeeze(axis=(2, 3)) @@ -298,4 +297,4 @@ class ResNet(nn.Cell): def resnet50(batch_size, num_classes): - return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) + return ResNet(ResidualBlock, num_classes, batch_size) diff --git a/tests/st/mem_reuse/resnet_cifar_memreuse.py b/tests/st/mem_reuse/resnet_cifar_memreuse.py index 0ce602bde74..3a63dbbbc26 100644 --- a/tests/st/mem_reuse/resnet_cifar_memreuse.py +++ b/tests/st/mem_reuse/resnet_cifar_memreuse.py @@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell): def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero) - loss = self.cross_entropy(logits, label)[0] - loss = self.mean(loss, (-1,)) - return loss + loss_func = self.cross_entropy(logits, label)[0] + loss_func = self.mean(loss_func, (-1,)) + return loss_func if __name__ == '__main__': @@ -146,4 +146,4 @@ if __name__ == '__main__': res = model.eval(eval_dataset) print("result: ", res) checker = os.path.exists("./memreuse.ir") - assert checker == True + assert checker, True diff --git a/tests/st/mem_reuse/resnet_cifar_normal.py b/tests/st/mem_reuse/resnet_cifar_normal.py index 1d61cb2188e..d96d016e665 100644 --- a/tests/st/mem_reuse/resnet_cifar_normal.py +++ b/tests/st/mem_reuse/resnet_cifar_normal.py @@ -114,9 +114,9 @@ class CrossEntropyLoss(nn.Cell): def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero) - loss = self.cross_entropy(logits, label)[0] - loss = self.mean(loss, (-1,)) - return loss + loss_func = self.cross_entropy(logits, label)[0] + loss_func = self.mean(loss_func, (-1,)) + return loss_func if __name__ == '__main__': @@ -146,4 +146,4 @@ if __name__ == '__main__': res = model.eval(eval_dataset) print("result: ", res) checker = os.path.exists("./normal_memreuse.ir") - assert checker == True + assert checker, True diff --git a/tests/st/networks/models/resnetv1_5.py b/tests/st/networks/models/resnetv1_5.py index 6cf671d57e3..93e4cad4032 100644 --- a/tests/st/networks/models/resnetv1_5.py +++ b/tests/st/networks/models/resnetv1_5.py @@ -95,8 +95,7 @@ class ResidualBlock(nn.Cell): def __init__(self, in_channels, out_channels, - stride=1, - down_sample=False): + stride=1): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion @@ -184,7 +183,7 @@ class ResidualBlockWithDown(nn.Cell): class MakeLayer0(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer0, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True) self.b = block(out_channels, out_channels, stride=stride) @@ -200,7 +199,7 @@ class MakeLayer0(nn.Cell): class MakeLayer1(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer1, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -218,7 +217,7 @@ class MakeLayer1(nn.Cell): class MakeLayer2(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer2, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -240,7 +239,7 @@ class MakeLayer2(nn.Cell): class MakeLayer3(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer3, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -256,7 +255,7 @@ class MakeLayer3(nn.Cell): class ResNet(nn.Cell): - def __init__(self, block, layer_num, num_classes=100, batch_size=32): + def __init__(self, block, num_classes=100, batch_size=32): super(ResNet, self).__init__() self.batch_size = batch_size self.num_classes = num_classes @@ -267,14 +266,10 @@ class ResNet(nn.Cell): self.relu = P.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="SAME") - self.layer1 = MakeLayer0( - block, layer_num[0], in_channels=64, out_channels=256, stride=1) - self.layer2 = MakeLayer1( - block, layer_num[1], in_channels=256, out_channels=512, stride=2) - self.layer3 = MakeLayer2( - block, layer_num[2], in_channels=512, out_channels=1024, stride=2) - self.layer4 = MakeLayer3( - block, layer_num[3], in_channels=1024, out_channels=2048, stride=2) + self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1) + self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2) + self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2) + self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2) self.pool = P.ReduceMean(keep_dims=True) self.fc = fc_with_initialize(512 * block.expansion, num_classes) @@ -298,4 +293,4 @@ class ResNet(nn.Cell): def resnet50(batch_size, num_classes): - return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) + return ResNet(ResidualBlock, num_classes, batch_size) diff --git a/tests/st/summary/test_davinci_summary.py b/tests/st/summary/test_davinci_summary.py index 96fa2fe8994..bc93afe364a 100644 --- a/tests/st/summary/test_davinci_summary.py +++ b/tests/st/summary/test_davinci_summary.py @@ -18,7 +18,7 @@ import numpy as np from apply_momentum import ApplyMomentum import mindspore.context as context import mindspore.nn as nn -import mindspore.nn as wrap +from mindspore.nn import wrap from mindspore import Tensor, Model from mindspore.common.api import ms_function from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits diff --git a/tests/st/tbe_networks/export_geir.py b/tests/st/tbe_networks/export_geir.py index a8589eefb6f..a4e6f572f57 100644 --- a/tests/st/tbe_networks/export_geir.py +++ b/tests/st/tbe_networks/export_geir.py @@ -13,12 +13,10 @@ # limitations under the License. # ============================================================================ import numpy as np - from resnet_torch import resnet50 from mindspore import Tensor -from mindspore.train.serialization import save, load, _check_filedir_or_create, _chg_model_file_name_if_same_exist, \ - _read_file_last_line, context, export +from mindspore.train.serialization import context, export context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") @@ -26,6 +24,4 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def test_resnet50_export(batch_size=1, num_classes=5): input_np = np.random.uniform(0.0, 1.0, size=[batch_size, 3, 224, 224]).astype(np.float32) net = resnet50(batch_size, num_classes) - # param_dict = load_checkpoint("./resnet50-1_103.ckpt") - # load_param_into_net(net, param_dict) export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="GEIR") diff --git a/tests/st/tbe_networks/resnet.py b/tests/st/tbe_networks/resnet.py index ef75b4509ef..53e47b9310f 100644 --- a/tests/st/tbe_networks/resnet.py +++ b/tests/st/tbe_networks/resnet.py @@ -99,8 +99,7 @@ class ResidualBlock(nn.Cell): def __init__(self, in_channels, out_channels, - stride=1, - down_sample=False): + stride=1): super(ResidualBlock, self).__init__() out_chls = out_channels // self.expansion @@ -188,7 +187,7 @@ class ResidualBlockWithDown(nn.Cell): class MakeLayer0(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer0, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True) self.b = block(out_channels, out_channels, stride=stride) @@ -204,7 +203,7 @@ class MakeLayer0(nn.Cell): class MakeLayer1(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer1, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -222,7 +221,7 @@ class MakeLayer1(nn.Cell): class MakeLayer2(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer2, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -244,7 +243,7 @@ class MakeLayer2(nn.Cell): class MakeLayer3(nn.Cell): - def __init__(self, block, layer_num, in_channels, out_channels, stride): + def __init__(self, block, in_channels, out_channels, stride): super(MakeLayer3, self).__init__() self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True) self.b = block(out_channels, out_channels, stride=1) @@ -260,7 +259,7 @@ class MakeLayer3(nn.Cell): class ResNet(nn.Cell): - def __init__(self, block, layer_num, num_classes=100, batch_size=32): + def __init__(self, block, num_classes=100, batch_size=32): super(ResNet, self).__init__() self.batch_size = batch_size self.num_classes = num_classes @@ -271,10 +270,10 @@ class ResNet(nn.Cell): self.relu = P.ReLU() self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="SAME") - self.layer1 = MakeLayer0(block, layer_num[0], in_channels=64, out_channels=256, stride=1) - self.layer2 = MakeLayer1(block, layer_num[1], in_channels=256, out_channels=512, stride=2) - self.layer3 = MakeLayer2(block, layer_num[2], in_channels=512, out_channels=1024, stride=2) - self.layer4 = MakeLayer3(block, layer_num[3], in_channels=1024, out_channels=2048, stride=2) + self.layer1 = MakeLayer0(block, in_channels=64, out_channels=256, stride=1) + self.layer2 = MakeLayer1(block, in_channels=256, out_channels=512, stride=2) + self.layer3 = MakeLayer2(block, in_channels=512, out_channels=1024, stride=2) + self.layer4 = MakeLayer3(block, in_channels=1024, out_channels=2048, stride=2) self.pool = P.ReduceMean(keep_dims=True) self.squeeze = P.Squeeze(axis=(2, 3)) @@ -298,4 +297,4 @@ class ResNet(nn.Cell): def resnet50(batch_size, num_classes): - return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes, batch_size) + return ResNet(ResidualBlock, num_classes, batch_size) diff --git a/tests/st/tbe_networks/resnet_cifar.py b/tests/st/tbe_networks/resnet_cifar.py index 39858d4f332..6b3b75a63c7 100644 --- a/tests/st/tbe_networks/resnet_cifar.py +++ b/tests/st/tbe_networks/resnet_cifar.py @@ -116,9 +116,9 @@ class CrossEntropyLoss(nn.Cell): def construct(self, logits, label): label = self.one_hot(label, F.shape(logits)[1], self.one, self.zero) - loss = self.cross_entropy(logits, label)[0] - loss = self.mean(loss, (-1,)) - return loss + loss_func = self.cross_entropy(logits, label)[0] + loss_func = self.mean(loss_func, (-1,)) + return loss_func if __name__ == '__main__': diff --git a/tests/st/tbe_networks/test_resnet_cifar_1p.py b/tests/st/tbe_networks/test_resnet_cifar_1p.py index 92954998c4c..45895185eb4 100644 --- a/tests/st/tbe_networks/test_resnet_cifar_1p.py +++ b/tests/st/tbe_networks/test_resnet_cifar_1p.py @@ -15,7 +15,7 @@ import os import random -import time + import pytest import numpy as np from resnet import resnet50 @@ -30,9 +30,8 @@ from mindspore import Tensor from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindspore.ops import operations as P -from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback +from mindspore.train.callback import Callback from mindspore.train.model import Model -from mindspore.train.serialization import load_checkpoint, load_param_into_net random.seed(1) np.random.seed(1) diff --git a/tests/st/tbe_networks/test_resnet_cifar_8p.py b/tests/st/tbe_networks/test_resnet_cifar_8p.py index 63c82a8bd0e..07a35f1591f 100644 --- a/tests/st/tbe_networks/test_resnet_cifar_8p.py +++ b/tests/st/tbe_networks/test_resnet_cifar_8p.py @@ -15,11 +15,10 @@ import os import random +from multiprocessing import Process, Queue import numpy as np import pytest -from multiprocessing import Process, Queue from resnet import resnet50 - import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.transforms.c_transforms as C