forked from mindspore-Ecosystem/mindspore
fix release notes
This commit is contained in:
parent
b7ec631f11
commit
0ebc9f1117
44
RELEASE.md
44
RELEASE.md
|
@ -60,28 +60,6 @@
|
|||
|
||||
### API Change
|
||||
|
||||
#### Backwards Incompatible Change
|
||||
|
||||
##### Python API
|
||||
|
||||
- DVPP simulation algorithm is no longer supported. Remove `mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg` and `mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg` interfaces.
|
||||
- Add `on_train_epoch_end` method in LossMonitor, which implements printing metric information in the epoch level when it is used in `mindspore.Model.fit`.
|
||||
- TimeMonitor printing content changes, and the printed content is added to "train" or "eval" to distinguish between training and inference phases.
|
||||
- `filter_prefix` of `mindspore.load_checkpoint` interface: empty string ("") is no longer supported, and the matching rules are changed from strong matching to fuzzy matching.
|
||||
|
||||
## MindSpore Lite
|
||||
|
||||
### Major Features and Improvements
|
||||
|
||||
#### API
|
||||
|
||||
- [STABLE] Add C++ and Python APIs for model conversion.
|
||||
- [STABLE] Add Python APIs for model inference.
|
||||
|
||||
#### Post-Training Quantization
|
||||
|
||||
- [STABLE] Support perlayer quantization, and built-in CLE to optimize perlayer quantization accuracy.
|
||||
|
||||
#### operator
|
||||
|
||||
- [STABLE] Add GPU support for ops.adaptive_avg_pool2d.
|
||||
|
@ -180,6 +158,28 @@
|
|||
- [STABLE] Add CPU support for ops.unsorted_segment_min.
|
||||
- [STABLE] Add GPU support for ops.unsorted_segment_prod.
|
||||
|
||||
#### Backwards Incompatible Change
|
||||
|
||||
##### Python API
|
||||
|
||||
- DVPP simulation algorithm is no longer supported. Remove `mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg` and `mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg` interfaces.
|
||||
- Add `on_train_epoch_end` method in LossMonitor, which implements printing metric information in the epoch level when it is used in `mindspore.Model.fit`.
|
||||
- TimeMonitor printing content changes, and the printed content is added to "train" or "eval" to distinguish between training and inference phases.
|
||||
- `filter_prefix` of `mindspore.load_checkpoint` interface: empty string ("") is no longer supported, and the matching rules are changed from strong matching to fuzzy matching.
|
||||
|
||||
## MindSpore Lite
|
||||
|
||||
### Major Features and Improvements
|
||||
|
||||
#### API
|
||||
|
||||
- [STABLE] Add C++ and Python APIs for model conversion.
|
||||
- [STABLE] Add Python APIs for model inference.
|
||||
|
||||
#### Post-Training Quantization
|
||||
|
||||
- [STABLE] Support perlayer quantization, and built-in CLE to optimize perlayer quantization accuracy.
|
||||
|
||||
### Contributors
|
||||
|
||||
Thanks goes to these wonderful people:
|
||||
|
|
|
@ -60,28 +60,6 @@
|
|||
|
||||
### API变更
|
||||
|
||||
#### 非兼容性变更
|
||||
|
||||
##### Python API
|
||||
|
||||
- 不再支持DVPP模拟算法,删除 `mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg` 和 `mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg` 接口。
|
||||
- LossMonitor中增加`on_train_epoch_end` 方法,实现在 `mindspore.Model.fit` 中使用时,打印epoch级别的metric信息。
|
||||
- TimeMonitor打印内容变更,打印内容加入"train"或"eval"用于区分训练和推理阶段。
|
||||
- load_checkpoint 接口的`filter_prefix`:不再支持空字符串(""),匹配规则由强匹配修改为模糊匹配。
|
||||
|
||||
## MindSpore Lite
|
||||
|
||||
### 主要特性和增强
|
||||
|
||||
#### API
|
||||
|
||||
- [STABLE] 新增模型转换的C++和Python API.
|
||||
- [STABLE] 新增模型推理的Python API.
|
||||
|
||||
#### 后量化
|
||||
|
||||
- [STABLE] 后量化支持PerLayer量化,同时内置CLE算法优化精度。
|
||||
|
||||
#### 算子
|
||||
|
||||
- [STABLE] ops.adaptive_avg_pool2d 新增GPU支持。
|
||||
|
@ -180,6 +158,28 @@
|
|||
- [STABLE] ops.unsorted_segment_min 新增CPU支持。
|
||||
- [STABLE] ops.unsorted_segment_prod 新增GPU支持。
|
||||
|
||||
#### 非兼容性变更
|
||||
|
||||
##### Python API
|
||||
|
||||
- 不再支持DVPP模拟算法,删除 `mindspore.dataset.vision.c_transforms.SoftDvppDecodeRandomCropResizeJpeg` 和 `mindspore.dataset.vision.c_transforms.SoftDvppDecodeResizeJpeg` 接口。
|
||||
- LossMonitor中增加`on_train_epoch_end` 方法,实现在 `mindspore.Model.fit` 中使用时,打印epoch级别的metric信息。
|
||||
- TimeMonitor打印内容变更,打印内容加入"train"或"eval"用于区分训练和推理阶段。
|
||||
- load_checkpoint 接口的`filter_prefix`:不再支持空字符串(""),匹配规则由强匹配修改为模糊匹配。
|
||||
|
||||
## MindSpore Lite
|
||||
|
||||
### 主要特性和增强
|
||||
|
||||
#### API
|
||||
|
||||
- [STABLE] 新增模型转换的C++和Python API.
|
||||
- [STABLE] 新增模型推理的Python API.
|
||||
|
||||
#### 后量化
|
||||
|
||||
- [STABLE] 后量化支持PerLayer量化,同时内置CLE算法优化精度。
|
||||
|
||||
### 贡献者
|
||||
|
||||
感谢以下人员做出的贡献:
|
||||
|
|
Loading…
Reference in New Issue