add resolve

transform valuetuple to maketuple of graphs

add testcase
This commit is contained in:
huangdongrun 2020-05-09 14:13:06 +08:00
parent 0eb32593a6
commit 0e89813759
2 changed files with 122 additions and 39 deletions

View File

@ -170,51 +170,59 @@ bool ResolveObjectToNode(const FuncGraphPtr &func_graph, const py::object &obj,
return true;
}
bool IsAllGraphInValueSequence(const std::vector<ValuePtr> &value_vec) {
for (auto &elem : value_vec) {
if (elem->isa<ValueTuple>() || elem->isa<ValueList>()) {
const auto &vec = GetValue<std::vector<ValuePtr>>(elem);
auto is_graph = IsAllGraphInValueSequence(vec);
if (!is_graph) {
return false;
}
} else if (!elem->isa<FuncGraph>()) {
return false;
}
}
return true;
}
AnfNodePtr TransformToMakeTupleNodes(const FuncGraphManagerPtr &manager, const FuncGraphPtr &func_graph,
const std::vector<ValuePtr> &value_vec) {
std::vector<AnfNodePtr> nodes;
nodes.emplace_back(NewValueNode(prim::kPrimMakeTuple));
for (auto &elem : value_vec) {
AnfNodePtr node = nullptr;
if (elem->isa<ValueTuple>() || elem->isa<ValueList>()) {
const auto &vec = GetValue<std::vector<ValuePtr>>(elem);
node = TransformToMakeTupleNodes(manager, func_graph, vec);
} else if (elem->isa<FuncGraph>()) {
FuncGraphPtr new_fg = elem->cast<FuncGraphPtr>();
manager->AddFuncGraph(new_fg);
node = NewValueNode(new_fg);
} else {
MS_LOG(EXCEPTION) << "TransformToMakeTupleNodes error, expect funcgraph, got " << elem->ToString();
}
nodes.emplace_back(node);
}
auto cnode = func_graph->NewCNode(nodes);
return cnode;
}
// transform the ValueTuple or ValueList of graph node to make tuple of const graph node
bool TransformVectorGraphValueNode(const FuncGraphManagerPtr &manager, const AnfNodePtr &node,
bool TransformVectorGraphValueNode(const FuncGraphManagerPtr &manager, const FuncGraphPtr &func_graph,
const ValueNodePtr &value_node, AnfNodePtr *const transformed) {
MS_EXCEPTION_IF_NULL(value_node);
const auto &value_vec = GetValue<std::vector<ValuePtr>>(value_node->value());
bool has_graph_in_list = false;
for (auto &elemv : value_vec) {
MS_EXCEPTION_IF_NULL(elemv);
if (elemv->isa<FuncGraph>()) {
FuncGraphPtr new_fg = elemv->cast<FuncGraphPtr>();
manager->AddFuncGraph(new_fg);
has_graph_in_list = true;
continue;
}
if (has_graph_in_list) {
MS_LOG(EXCEPTION) << "List has graph in it, but not all is graph";
}
if (!IsAllGraphInValueSequence(value_vec)) {
return false;
}
// The celllist or ordered_cell will be parsed as valuetuple of const graph in it,
// So if has graph in list, try to replace the node with make tuple of graph value node.
if (has_graph_in_list) {
// change the vector of graph to be make_list of graph value node
std::vector<AnfNodePtr> list_vec;
auto make_list_op = NewValueNode(prim::kPrimMakeTuple);
list_vec.emplace_back(make_list_op);
(void)std::transform(std::begin(value_vec), std::end(value_vec), std::back_inserter(list_vec),
[](const ValuePtr &value) { return NewValueNode(value); });
FuncGraphPtr cnode_graph = nullptr;
auto users = manager->node_users()[node];
for (auto &use : users) {
auto use_node = use.first;
MS_EXCEPTION_IF_NULL(use_node);
if (use_node->isa<CNode>()) {
cnode_graph = use_node->func_graph();
}
}
if (cnode_graph) {
CNodePtr list_app = cnode_graph->NewCNode(list_vec);
// replace the ret ptr to be make_list of graph value node
*transformed = list_app;
} else {
MS_LOG(EXCEPTION) << "Can not find apply for node use when replacing node of vector of graph";
}
}
// we do this because the graphmanger won't investigate the graph inside valuetuple,
// change the vector of graph to be make_tuple of graph value node
auto node_tuple_graphs = TransformToMakeTupleNodes(manager, func_graph, value_vec);
// replace the ret ptr to be make tuple of graph value node
*transformed = node_tuple_graphs;
return true;
}
@ -245,7 +253,8 @@ AnfNodePtr ResolveSymbol(const FuncGraphManagerPtr &manager, const NameSpacePtr
// if the constant node is constant of vector of graph ,add graph to manager
if (IsValueNode<ValueTuple>(resolved_node) || IsValueNode<ValueList>(resolved_node)) {
(void)TransformVectorGraphValueNode(manager, node, resolved_node->cast<ValueNodePtr>(), &resolved_node);
(void)TransformVectorGraphValueNode(manager, node->func_graph(), resolved_node->cast<ValueNodePtr>(),
&resolved_node);
}
TraceManager::EndTrace();

View File

@ -0,0 +1,74 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import mindspore.context as context
import functools
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import operations as P
from mindspore import context
from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.mindspore_test import mindspore_test
from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
class TupleGraphNet(nn.Cell):
def __init__(self):
super(TupleGraphNet, self).__init__()
self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same')
self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same')
self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same')
self.layers = (self.conv1, self.conv2, self.conv3)
def construct(self, x):
return self.layers[0](x)
class NestTupleGraphNet(nn.Cell):
def __init__(self):
super(NestTupleGraphNet, self).__init__()
self.conv1 = nn.Conv2d(3, 1, 3, pad_mode='same')
self.conv2 = nn.Conv2d(3, 1, 7, pad_mode='same')
self.conv3 = nn.Conv2d(3, 3, 3, pad_mode='same')
self.layers = ((self.conv1, self.conv2),
(self.conv2, self.conv1, self.conv3))
def construct(self, x):
return self.layers[0][1](x)
test_case_ops = [
('TupleGraph', {
'block': TupleGraphNet(),
'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}),
('NestTupleGraph', {
'block': NestTupleGraphNet(),
'desc_inputs': [Tensor(np.ones((3, 3, 24, 24)), mstype.float32)]}),
]
test_case_lists = [test_case_ops]
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
# use -k to select certain testcast
# pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
@non_graph_engine
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
def test_exec():
context.set_context(mode=context.GRAPH_MODE)
return test_exec_case