forked from mindspore-Ecosystem/mindspore
parent
37234c17f8
commit
0e02df812a
|
@ -137,6 +137,7 @@ static std::map<string, string> tbe_func_adapter_map = {
|
|||
{"histogram_fixed_width", "histogram_fixed_width_d"},
|
||||
{"broadcast_to", "broadcast_to_d"},
|
||||
{"inplace_update", "inplace_update_d"},
|
||||
{"i_fmr", "ifmr"},
|
||||
{"matrix_diag", "matrix_diag_d"},
|
||||
{"matrix_diag_part", "matrix_diag_part_d"},
|
||||
{"matrix_set_diag", "matrix_set_diag_d"}};
|
||||
|
|
|
@ -310,3 +310,4 @@ from .population_count import _population_count_tbe
|
|||
from .parallel_concat import _parallel_concat_tbe
|
||||
from .adam_apply_one_assign import _adam_apply_one_assign_tbe
|
||||
from .adam_apply_one_with_decay_assign import _adam_apply_one_with_decay_assign_tbe
|
||||
from .ifmr import _ifmr_tbe
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""IFMR op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
ifmr_op_info = TBERegOp("IFMR") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("ifmr.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("ifmr") \
|
||||
.partial_flag(True) \
|
||||
.attr("min_percentile", "required", "float", "all") \
|
||||
.attr("max_percentile", "required", "float", "all") \
|
||||
.attr("search_range", "required", "listFloat", "all") \
|
||||
.attr("search_step", "required", "float", "all") \
|
||||
.attr("with_offset", "required", "bool", "all") \
|
||||
.input(0, "data", False, "required", "all") \
|
||||
.input(1, "data_min", False, "required", "all") \
|
||||
.input(2, "data_max", False, "required", "all") \
|
||||
.input(3, "cumsum", False, "required", "all") \
|
||||
.output(0, "scale", False, "required", "all") \
|
||||
.output(1, "offset", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.I32_Default,
|
||||
DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.I32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(ifmr_op_info)
|
||||
def _ifmr_tbe():
|
||||
"""IFMR TBE register"""
|
||||
return
|
|
@ -53,7 +53,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
NPUAllocFloatStatus, NPUClearFloatStatus,
|
||||
NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
|
||||
Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy,
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod,
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, IFMR,
|
||||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
|
@ -97,6 +97,7 @@ __all__ = [
|
|||
'EditDistance',
|
||||
'CropAndResize',
|
||||
'TensorAdd',
|
||||
'IFMR',
|
||||
'Argmax',
|
||||
'Argmin',
|
||||
'ArgMaxWithValue',
|
||||
|
|
|
@ -3514,3 +3514,64 @@ class Eps(PrimitiveWithInfer):
|
|||
'dtype': input_x['dtype'],
|
||||
}
|
||||
return out
|
||||
|
||||
|
||||
class IFMR(PrimitiveWithInfer):
|
||||
"""
|
||||
The TFMR(Input Feature Map Reconstruction).
|
||||
|
||||
Args:
|
||||
min_percentile (float): Min init percentile.
|
||||
max_percentile (float): Max init percentile.
|
||||
search_range Union[list(float), tuple(float)]: Range of searching.
|
||||
search_step (float): Step size of searching.
|
||||
with_offset (bool): Whether using offset.
|
||||
|
||||
Inputs:
|
||||
- **data** (Tensor) - A Tensor of feature map. With float16 or float32 data type.
|
||||
- **data_min** (Tensor) - A Tensor of min value of feature map, the shape is :math:`(1)`.
|
||||
With float16 or float32 data type.
|
||||
- **data_max** (Tensor) - A Tensor of max value of feature map, the shape is :math:`(1)`.
|
||||
With float16 or float32 data type.
|
||||
- **cumsum** (Tensor) - A `1-D` Tensor of cumsum bin of data. With int32 data type.
|
||||
|
||||
Outputs:
|
||||
- **scale** (Tensor) - A tensor of optimal scale, the shape is :math:`(1)`. Data dtype is float32.
|
||||
- **offset** (Tensor) - A tensor of optimal offset, the shape is :math:`(1)`. Data dtype is float32.
|
||||
|
||||
Examples:
|
||||
>>> data = Tensor(np.random.rand(1, 3, 6, 4).astype(np.float32))
|
||||
>>> data_min = Tensor([0.1], mstype.float32)
|
||||
>>> data_max = Tensor([0.5], mstype.float32)
|
||||
>>> cumsum = Tensor(np.random.rand(4).astype(np.int32))
|
||||
>>> ifmr = P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0),
|
||||
search_step=1.0, with_offset=False)
|
||||
>>> output = ifmr(data, data_min, data_max, cumsum)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, min_percentile, max_percentile, search_range, search_step, with_offset):
|
||||
validator.check_value_type("min_percentile", min_percentile, [float], self.name)
|
||||
validator.check_value_type("max_percentile", max_percentile, [float], self.name)
|
||||
validator.check_value_type("search_range", search_range, [list, tuple], self.name)
|
||||
for item in search_range:
|
||||
validator.check_float_positive("item of search_range", item, self.name)
|
||||
validator.check('search_range[1]', search_range[1], 'search_range[0]', search_range[0], Rel.GE, self.name)
|
||||
validator.check_value_type("search_step", search_step, [float], self.name)
|
||||
validator.check_value_type("offset_flag", with_offset, [bool], self.name)
|
||||
|
||||
def infer_shape(self, data_shape, data_min_shape, data_max_shape, cumsum_shape):
|
||||
validator.check_integer("dims of data_min", len(data_min_shape), 1, Rel.EQ, self.name)
|
||||
validator.check_integer("data_min[0]", data_min_shape[0], 1, Rel.EQ, self.name)
|
||||
validator.check_integer("dims of data_max", len(data_max_shape), 1, Rel.EQ, self.name)
|
||||
validator.check_integer("data_max[0]", data_max_shape[0], 1, Rel.EQ, self.name)
|
||||
validator.check_integer("dims of cumsum", len(cumsum_shape), 1, Rel.EQ, self.name)
|
||||
return (1,), (1,)
|
||||
|
||||
def infer_dtype(self, data_dtype, data_min_dtype, data_max_dtype, cumsum_dtype):
|
||||
valid_types = [mstype.float32, mstype.float16]
|
||||
validator.check_tensor_type_same({"input_value": data_dtype}, valid_types, self.name)
|
||||
validator.check_tensor_type_same({"input_min": data_min_dtype}, valid_types, self.name)
|
||||
validator.check_tensor_type_same({"input_max": data_max_dtype}, valid_types, self.name)
|
||||
validator.check_tensor_type_same({"input_bins": cumsum_dtype}, [mstype.int32], self.name)
|
||||
return mstype.tensor_type(mstype.float32), mstype.tensor_type(mstype.float32)
|
||||
|
|
|
@ -1275,6 +1275,13 @@ test_case_math_ops = [
|
|||
'block': P.Mod(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
'desc_bprop': [[2, 3, 4, 5]]}),
|
||||
('IFMR', {
|
||||
'block': P.IFMR(min_percentile=0.2, max_percentile=0.9, search_range=(1.0, 2.0),
|
||||
search_step=1.0, with_offset=False),
|
||||
'desc_inputs': [[3, 4, 5], Tensor([0.1], mstype.float32), Tensor([0.9], mstype.float32),
|
||||
Tensor(np.random.rand(4).astype(np.int32))],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
]
|
||||
|
||||
test_case_nn_ops = [
|
||||
|
|
Loading…
Reference in New Issue