forked from mindspore-Ecosystem/mindspore
add register func for mean op
This commit is contained in:
parent
e9c4a697d5
commit
0d77de77e0
|
@ -0,0 +1,79 @@
|
|||
/**
|
||||
* Copyright 2019-2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/ops.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "utils/log_adapter.h"
|
||||
#include "src/ir/tensor.h"
|
||||
|
||||
namespace mindspore::lite {
|
||||
namespace {
|
||||
constexpr size_t kInputSize = 1;
|
||||
constexpr size_t kOutputSize = 1;
|
||||
} // namespace
|
||||
int Mean::InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor::Tensor *> outputs_) {
|
||||
if (inputs_.size() != kInputSize || outputs_.size() != kOutputSize) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
auto input = inputs_.front();
|
||||
auto output = outputs_.front();
|
||||
if (input == nullptr || output == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
if (this->primitive == nullptr) {
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto mean_prim = this->primitive->value_as_Mean();
|
||||
bool keep_dims = static_cast<bool>(mean_prim->keepDims());
|
||||
std::vector<int> in_shape = input->shape();
|
||||
std::vector<int> out_shape;
|
||||
const auto &axes = mean_prim->axis();
|
||||
auto num_axes = axes->size();
|
||||
// reduce on all axes
|
||||
if (num_axes == 0) {
|
||||
if (keep_dims) {
|
||||
for (auto i = 0; i < in_shape.size(); i++) {
|
||||
out_shape.push_back(1);
|
||||
}
|
||||
}
|
||||
output->set_shape(out_shape);
|
||||
output->set_data_type(input->data_type());
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
// reduce on selected axes
|
||||
for (size_t i = 0; i < in_shape.size(); i++) {
|
||||
bool reduce_axis = false;
|
||||
for (int idx = 0; idx < num_axes; ++idx) {
|
||||
if (static_cast<size_t>((*axes)[idx]) == i) {
|
||||
reduce_axis = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (reduce_axis) {
|
||||
if (keep_dims) {
|
||||
out_shape.push_back(1);
|
||||
}
|
||||
} else {
|
||||
out_shape.push_back(in_shape[i]);
|
||||
}
|
||||
}
|
||||
output->set_shape(out_shape);
|
||||
output->set_data_type(input->data_type());
|
||||
output->SetFormat(input->GetFormat());
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::lite
|
|
@ -384,6 +384,13 @@ class Fill : public Primitive {
|
|||
int InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor::Tensor *> outputs_) override;
|
||||
};
|
||||
|
||||
class Mean : public Primitive {
|
||||
public:
|
||||
explicit Mean(schema::Primitive *primitive) : Primitive(primitive) {}
|
||||
const schema::Mean *GetAttribute() const { return this->primitive->value_as_Mean(); }
|
||||
int InferShape(std::vector<tensor::Tensor *> inputs_, std::vector<tensor::Tensor *> outputs_) override;
|
||||
};
|
||||
|
||||
class ArgMax : public Primitive {
|
||||
public:
|
||||
explicit ArgMax(schema::Primitive *primitive) : Primitive(primitive) {}
|
||||
|
@ -601,10 +608,11 @@ class SpaceToBatch : public Primitive {
|
|||
explicit SpaceToBatch(schema::Primitive *primitive) : Primitive(primitive) {}
|
||||
const schema::SpaceToBatch *GetAttribute() const { return this->primitive->value_as_SpaceToBatch(); }
|
||||
int InferShape(std::vector<tensor::Tensor *> inputs, std::vector<tensor::Tensor *> outputs) override;
|
||||
std::vector<int> BlockSizes() {return block_sizes_;}
|
||||
std::vector<int> Paddings() {return block_sizes_;}
|
||||
std::vector<int> InShape() {return block_sizes_;}
|
||||
std::vector<int> PaddedInShape() {return block_sizes_;}
|
||||
std::vector<int> BlockSizes() { return block_sizes_; }
|
||||
std::vector<int> Paddings() { return block_sizes_; }
|
||||
std::vector<int> InShape() { return block_sizes_; }
|
||||
std::vector<int> PaddedInShape() { return block_sizes_; }
|
||||
|
||||
private:
|
||||
std::vector<int> block_sizes_;
|
||||
std::vector<int> paddings_;
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include <float.h>
|
||||
#include "src/ops/ops.h"
|
||||
#include "utils/log_adapter.h"
|
||||
#include "schema/ops_generated.h"
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/arg_min_max.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/cast.h"
|
||||
|
@ -391,6 +392,30 @@ OpParameter *PopulateReduceParameter(const lite::Primitive *primitive) {
|
|||
return reinterpret_cast<OpParameter *>(reduce_param);
|
||||
}
|
||||
|
||||
OpParameter *PopulateMeanParameter(const lite::Primitive *primitive) {
|
||||
ReduceParameter *mean_param = new (std::nothrow) ReduceParameter();
|
||||
if (mean_param == nullptr) {
|
||||
MS_LOG(ERROR) << "new ReduceParameter failed.";
|
||||
return nullptr;
|
||||
}
|
||||
mean_param->op_parameter_.type_ = primitive->Type();
|
||||
auto mean = primitive->Value()->value_as_Mean();
|
||||
mean_param->keep_dims_ = mean->keepDims();
|
||||
auto axisVector = mean->axis();
|
||||
if (axisVector->size() > REDUCE_MAX_AXES_NUM) {
|
||||
MS_LOG(ERROR) << "Reduce axes size " << axisVector->size() << " exceed limit " << REDUCE_MAX_AXES_NUM;
|
||||
delete (mean_param);
|
||||
return nullptr;
|
||||
}
|
||||
mean_param->num_axes_ = static_cast<int>(axisVector->size());
|
||||
int i = 0;
|
||||
for (auto iter = axisVector->begin(); iter != axisVector->end(); iter++) {
|
||||
mean_param->axes_[i++] = *iter;
|
||||
}
|
||||
mean_param->mode_ = static_cast<int>(schema::ReduceMode_ReduceMean);
|
||||
return reinterpret_cast<OpParameter *>(mean_param);
|
||||
}
|
||||
|
||||
OpParameter *PopulatePadParameter(const lite::Primitive *primitive) {
|
||||
PadParameter *pad_param = new (std::nothrow) PadParameter();
|
||||
if (pad_param == nullptr) {
|
||||
|
@ -1131,6 +1156,7 @@ PopulateParameterRegistry::PopulateParameterRegistry() {
|
|||
populate_parameter_funcs_[schema::PrimitiveType_Activation] = PopulateActivationParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_Conv2D] = PopulateConvParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_Reduce] = PopulateReduceParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_Mean] = PopulateMeanParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_Pooling] = PopulatePoolingParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_DepthwiseConv2D] = PopulateConvDwParameter;
|
||||
populate_parameter_funcs_[schema::PrimitiveType_DeDepthwiseConv2D] = PopulateDeconvDwParameter;
|
||||
|
|
|
@ -92,7 +92,7 @@ kernel::LiteKernel *CpuReshapeFp32KernelCreator(const std::vector<lite::tensor::
|
|||
MS_ASSERT(desc.type == schema::PrimitiveType_Reshape);
|
||||
auto *kernel = new (std::nothrow) ReshapeCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new ConcatCPUKernel fail!";
|
||||
MS_LOG(ERROR) << "new ReshapeCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
|
|
|
@ -99,8 +99,10 @@ kernel::LiteKernel *CpuActivationFp32KernelCreator(const std::vector<lite::tenso
|
|||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
|
|
@ -61,6 +61,7 @@ kernel::LiteKernel *CpuFusedBatchnormKernelCreator(const std::vector<lite::tenso
|
|||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
|
@ -70,4 +71,3 @@ kernel::LiteKernel *CpuFusedBatchnormKernelCreator(const std::vector<lite::tenso
|
|||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_FusedBatchNorm, CpuFusedBatchnormKernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -46,12 +46,13 @@ kernel::LiteKernel *CpuMatmulFp32KernelCreator(const std::vector<lite::tensor::T
|
|||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_MatMul, CpuMatmulFp32KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -74,8 +74,10 @@ kernel::LiteKernel *CpuPowerFp32KernelCreator(const std::vector<lite::tensor::Te
|
|||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
|
|
@ -26,6 +26,7 @@ using mindspore::lite::KernelRegistrar;
|
|||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_NULL_PTR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Mean;
|
||||
using mindspore::schema::PrimitiveType_Reduce;
|
||||
using mindspore::schema::ReduceMode;
|
||||
using mindspore::schema::ReduceMode_ReduceMax;
|
||||
|
@ -195,6 +196,27 @@ int ReduceCPUKernel::Run() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int ReduceCPUKernel::MallocTmpBuffer() {
|
||||
auto input_shape = inputs_.at(0)->shape();
|
||||
for (auto i = 0; i < num_axes_ - 1; i++) {
|
||||
int axis = axes_[i];
|
||||
size_t size = 1;
|
||||
for (auto j = 0; j < input_shape.size(); j++) {
|
||||
if (static_cast<size_t>(axis) != j) {
|
||||
size *= input_shape[j];
|
||||
}
|
||||
}
|
||||
float *buffer = reinterpret_cast<float *>(malloc(size * sizeof(float)));
|
||||
if (buffer == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc data failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
data_buffers_.emplace_back(buffer);
|
||||
input_shape[axis] = 1;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuReduceFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
|
@ -219,30 +241,42 @@ kernel::LiteKernel *CpuReduceFp32KernelCreator(const std::vector<lite::tensor::T
|
|||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
int ReduceCPUKernel::MallocTmpBuffer() {
|
||||
auto input_shape = inputs_.at(0)->shape();
|
||||
for (auto i = 0; i < num_axes_ - 1; i++) {
|
||||
int axis = axes_[i];
|
||||
size_t size = 1;
|
||||
for (auto j = 0; j < input_shape.size(); j++) {
|
||||
if (static_cast<size_t>(axis) != j) {
|
||||
size *= input_shape[j];
|
||||
}
|
||||
}
|
||||
float *buffer = reinterpret_cast<float *>(malloc(size * sizeof(float)));
|
||||
if (buffer == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc data failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
data_buffers_.emplace_back(buffer);
|
||||
input_shape[axis] = 1;
|
||||
kernel::LiteKernel *CpuMeanFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
MS_ASSERT(opParameter != nullptr);
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Mean);
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Reduce opParameter nullptr";
|
||||
return nullptr;
|
||||
}
|
||||
return RET_OK;
|
||||
if (desc.type != schema::PrimitiveType_Mean) {
|
||||
MS_LOG(ERROR) << "Reduce op desc.type should be PrimitiveType_Mean, got " << desc.type;
|
||||
return nullptr;
|
||||
}
|
||||
auto *kernel =
|
||||
new (std::nothrow) ReduceCPUKernel(reinterpret_cast<ReduceParameter *>(opParameter), inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "Reduce new ReduceCPUKernel failed.";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reduce, CpuReduceFp32KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Mean, CpuMeanFp32KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -69,7 +69,7 @@ kernel::LiteKernel *CpuShapeFp32KernelCreator(const std::vector<lite::tensor::Te
|
|||
}
|
||||
|
||||
auto ret = kernel->Init();
|
||||
if (ret != 0) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
|
|
|
@ -73,7 +73,7 @@ kernel::LiteKernel *CpuStridedSliceFp32KernelCreator(const std::vector<lite::ten
|
|||
}
|
||||
|
||||
auto ret = kernel->Init();
|
||||
if (ret != 0) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
|
|
|
@ -82,7 +82,7 @@ kernel::LiteKernel *CpuUnsqueezeFp32KernelCreator(const std::vector<lite::tensor
|
|||
MS_ASSERT(desc.type == schema::PrimitiveType_Unsqueeze);
|
||||
auto *kernel = new (std::nothrow) UnsqueezeCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new AddNCPUKernel fail!";
|
||||
MS_LOG(ERROR) << "new UnsqueezeCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
|
|
|
@ -30,9 +30,9 @@ using mindspore::schema::PrimitiveType_Activation;
|
|||
|
||||
namespace mindspore::kernel {
|
||||
kernel::LiteKernel *CpuActivationInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *parameter, const lite::Context *ctx,
|
||||
const KernelKey &desc) {
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *parameter, const lite::Context *ctx,
|
||||
const KernelKey &desc) {
|
||||
if (parameter == nullptr) {
|
||||
MS_LOG(ERROR) << "parameter is nullptr";
|
||||
return nullptr;
|
||||
|
@ -56,8 +56,10 @@ kernel::LiteKernel *CpuActivationInt8KernelCreator(const std::vector<lite::tenso
|
|||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Add;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
@ -135,7 +136,7 @@ kernel::LiteKernel *CpuAddInt8KernelCreator(const std::vector<lite::tensor::Tens
|
|||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (0 != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
||||
delete kernel;
|
||||
|
@ -146,4 +147,3 @@ kernel::LiteKernel *CpuAddInt8KernelCreator(const std::vector<lite::tensor::Tens
|
|||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Add, CpuAddInt8KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -18,8 +18,10 @@
|
|||
#include "src/runtime/kernel/arm/opclib/fp32/arithmetic.h"
|
||||
#include "src/runtime/kernel/arm/opclib/errorcode.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_BiasAdd;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
@ -71,7 +73,7 @@ kernel::LiteKernel *CpuBiasAddInt8KernelCreator(const std::vector<lite::tensor::
|
|||
}
|
||||
|
||||
auto ret = kernel->Init();
|
||||
if (0 != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << parameter->name_
|
||||
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(parameter->type_));
|
||||
delete kernel;
|
||||
|
@ -82,4 +84,3 @@ kernel::LiteKernel *CpuBiasAddInt8KernelCreator(const std::vector<lite::tensor::
|
|||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BiasAdd, CpuBiasAddInt8KernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -105,7 +105,46 @@ void IndirectGemmFp32_8x8(float *output, const float *input, const float *weight
|
|||
#ifndef ENABLE_ARM32
|
||||
void IndirectGemmFp32_8x4(float *output, const float *input, const float *weight, const float *bias, size_t step,
|
||||
size_t ic4, size_t output_channel, size_t offset, size_t mode, size_t writeC4, size_t relu,
|
||||
size_t relu6) {}
|
||||
size_t relu6) {
|
||||
for (int i = 0; i < TILE_NUM; i++) {
|
||||
int input_tile_offset = i * C4NUM;
|
||||
int output_tile_offset = i * output_channel;
|
||||
for (int j = 0; j < output_channel; j++) {
|
||||
int oc4_block = j / C4NUM;
|
||||
int oc4_res = j % C4NUM;
|
||||
int weight_oc_offset = oc4_block * step * ic4 * C4NUM * C4NUM + oc4_res;
|
||||
int out_oc_offset = output_tile_offset + j;
|
||||
|
||||
float acc = 0;
|
||||
for (int n = 0; n < step; n++) {
|
||||
int input_kw_offset = input_tile_offset + n * ic4 * C4NUM * TILE_NUM;
|
||||
int weight_kw_offset = weight_oc_offset + n * ic4 * C4NUM * C4NUM;
|
||||
|
||||
for (int k = 0; k < ic4; k++) {
|
||||
int input_ic4_offset = input_kw_offset + k * TILE_NUM * C4NUM;
|
||||
int weight_ic4_offset = weight_kw_offset + k * C4NUM * C4NUM;
|
||||
for (int m = 0; m < C4NUM; m++) {
|
||||
int input_ic_offset = input_ic4_offset + m;
|
||||
int weight_ic_offset = weight_ic4_offset + m * C4NUM;
|
||||
acc += (weight + weight_ic_offset)[0] * (input + input_ic_offset)[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
acc += bias[j];
|
||||
if (relu) {
|
||||
acc = acc > 0 ? acc : 0;
|
||||
} else if (relu6) {
|
||||
if (acc < 0) {
|
||||
acc = 0;
|
||||
} else if (acc > 6) {
|
||||
acc = 6;
|
||||
} else {
|
||||
}
|
||||
}
|
||||
(output + out_oc_offset)[0] = acc;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int8_t MinInt8(int8_t a, int8_t b) { return b ^ ((a ^ b) & -(a < b)); }
|
||||
|
|
|
@ -175,9 +175,11 @@ kernel::LiteKernel *Scheduler::ScheduleNode(const std::vector<tensor::Tensor *>
|
|||
kernel::KernelKey key{desc.arch, kNumberTypeFloat16, desc.type};
|
||||
kernel = KernelFactory::GetInstance()->GetKernel(inputs, outputs, primitive, context_, key);
|
||||
if (kernel != nullptr) {
|
||||
MS_LOG(INFO) << "Get fp16 op success.";
|
||||
kernel->set_desc(desc);
|
||||
return kernel;
|
||||
}
|
||||
MS_LOG(INFO) << "Get fp16 op failed, back to fp32 op.";
|
||||
kernel = KernelFactory::GetInstance()->GetKernel(inputs, outputs, primitive, context_, desc);
|
||||
} else {
|
||||
kernel = KernelFactory::GetInstance()->GetKernel(inputs, outputs, primitive, context_, desc);
|
||||
|
|
|
@ -73,7 +73,7 @@ TEST_F(InferTest, TestConvNode) {
|
|||
auto buf = new char *[1];
|
||||
//================================================================
|
||||
size_t weight_size;
|
||||
std::string weight_path = "./convfp32_weight_32_3_3_3.bin";
|
||||
std::string weight_path = "./test_data/conv/convfp32_weight_32_3_3_3.bin";
|
||||
ReadFile(weight_path.c_str(), &weight_size, buf);
|
||||
ASSERT_NE(nullptr, buf[0]);
|
||||
auto weight_data_temp = reinterpret_cast<float *>(buf[0]);
|
||||
|
@ -118,7 +118,7 @@ TEST_F(InferTest, TestConvNode) {
|
|||
auto data = inTensor->MutableData();
|
||||
//===================================================
|
||||
size_t input_size;
|
||||
std::string input_path = "./convfp32_input_1_28_28_3.bin";
|
||||
std::string input_path = "./test_data/conv/convfp32_input_1_28_28_3.bin";
|
||||
ReadFile(input_path.c_str(), &input_size, buf);
|
||||
ASSERT_NE(nullptr, buf[0]);
|
||||
auto input_data = reinterpret_cast<float *>(buf[0]);
|
||||
|
@ -138,7 +138,7 @@ TEST_F(InferTest, TestConvNode) {
|
|||
ASSERT_NE(nullptr, outData);
|
||||
//===================================================
|
||||
size_t output_size;
|
||||
std::string output_path = "./convfp32_out_1_28_28_32.bin";
|
||||
std::string output_path = "./test_data/conv/convfp32_out_1_28_28_32.bin";
|
||||
ReadFile(output_path.c_str(), &output_size, buf);
|
||||
ASSERT_NE(nullptr, buf[0]);
|
||||
auto output_data = reinterpret_cast<float *>(buf[0]);
|
||||
|
@ -146,7 +146,7 @@ TEST_F(InferTest, TestConvNode) {
|
|||
//===================================================
|
||||
ASSERT_EQ(output_size, outTensor->Size());
|
||||
for (size_t i = 0; i < outTensor->ElementsNum(); i++) {
|
||||
ASSERT_EQ(output_data[i], outData[i]);
|
||||
ASSERT_LE((output_data[i]- outData[i]), 0.001);
|
||||
}
|
||||
MS_LOG(INFO) << "Passed";
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue