forked from mindspore-Ecosystem/mindspore
[feat][assistant][I40GXT] add new loader DBpedia
This commit is contained in:
parent
a304352179
commit
0d26c38693
|
@ -96,6 +96,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/clue_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/coco_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/emnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/fake_image_node.h"
|
||||
|
@ -1029,6 +1030,14 @@ CSVDataset::CSVDataset(const std::vector<std::vector<char>> &dataset_files, char
|
|||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
DBpediaDataset::DBpediaDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
int64_t num_samples, ShuffleMode shuffle, int32_t num_shards, int32_t shard_id,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto ds = std::make_shared<DBpediaNode>(CharToString(dataset_dir), CharToString(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
ir_node_ = std::static_pointer_cast<DBpediaNode>(ds);
|
||||
}
|
||||
|
||||
DIV2KDataset::DIV2KDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage,
|
||||
const std::vector<char> &downgrade, int32_t scale, bool decode,
|
||||
const std::shared_ptr<Sampler> &sampler, const std::shared_ptr<DatasetCache> &cache) {
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/clue_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/coco_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/emnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/fake_image_node.h"
|
||||
|
@ -158,6 +159,18 @@ PYBIND_REGISTER(CSVNode, 2, ([](const py::module *m) {
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(DBpediaNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<DBpediaNode, DatasetNode, std::shared_ptr<DBpediaNode>>(*m, "DBpediaNode",
|
||||
"to create a DBpediaNode")
|
||||
.def(py::init([](std::string dataset_dir, std::string usage, int64_t num_samples, int32_t shuffle,
|
||||
int32_t num_shards, int32_t shard_id) {
|
||||
auto dbpedia = std::make_shared<DBpediaNode>(
|
||||
dataset_dir, usage, num_samples, toShuffleMode(shuffle), num_shards, shard_id, nullptr);
|
||||
THROW_IF_ERROR(dbpedia->ValidateParams());
|
||||
return dbpedia;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(DIV2KNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<DIV2KNode, DatasetNode, std::shared_ptr<DIV2KNode>>(*m, "DIV2KNode",
|
||||
"to create a DIV2KNode")
|
||||
|
|
|
@ -28,6 +28,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
photo_tour_op.cc
|
||||
fashion_mnist_op.cc
|
||||
ag_news_op.cc
|
||||
dbpedia_op.cc
|
||||
)
|
||||
|
||||
set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/engine/datasetops/source/dbpedia_op.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "debug/common.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/jagged_connector.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
DBpediaOp::DBpediaOp(const std::vector<std::string> &dataset_files_list, char field_delim,
|
||||
const std::vector<std::shared_ptr<BaseRecord>> &column_default,
|
||||
const std::vector<std::string> &column_name, int32_t num_workers, int64_t num_samples,
|
||||
int32_t worker_connector_size, int32_t op_connector_size, bool shuffle_files, int32_t num_devices,
|
||||
int32_t device_id)
|
||||
: CsvOp(dataset_files_list, field_delim, column_default, column_name, num_workers, num_samples,
|
||||
worker_connector_size, op_connector_size, shuffle_files, num_devices, device_id) {}
|
||||
|
||||
void DBpediaOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal 1-liner info for this op
|
||||
out << "\n";
|
||||
} else {
|
||||
// Call the super class for displaying any common detailed info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal stuff
|
||||
out << "\nSample count: " << total_rows_ << "\nDevice id: " << device_id_ << "\nNumber of devices: " << num_devices_
|
||||
<< "\nShuffle files: " << ((shuffle_files_) ? "yes" : "no") << "\nDBpedia files list:\n";
|
||||
for (int i = 0; i < csv_files_list_.size(); ++i) {
|
||||
out << " " << csv_files_list_[i];
|
||||
}
|
||||
out << "\n\n";
|
||||
}
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,70 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_DBPEDIA_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_DBPEDIA_OP_H_
|
||||
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/csv_op.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class DBpediaOp : public CsvOp {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] dataset_files_list - List of file paths for the dataset files.
|
||||
/// \param[in] field_delim - A char that indicates the delimiter to separate fields.
|
||||
/// \param[in] column_default - List of default values for the CSV field (default={}). Each item in the list is
|
||||
/// either a valid type (float, int, or string).
|
||||
/// \param[in] column_name - List of column names of the dataset file.
|
||||
/// \param[in] num_workers - Num of workers reading files in parallel.
|
||||
/// \param[in] num_samples - The number of samples to be included in the dataset.
|
||||
/// \param[in] worker_connector_size - Size of each internal queue.
|
||||
/// \param[in] op_connector_size - Size of each queue in the connector that the child operator pulls from.
|
||||
/// \param[in] shuffle_files - Whether or not to shuffle the files before reading data.
|
||||
/// \param[in] num_devices - Number of devices that the dataset should be divided into.
|
||||
/// \param[in] device_id - The device ID within num_devices.
|
||||
DBpediaOp(const std::vector<std::string> &dataset_files_list, char field_delim,
|
||||
const std::vector<std::shared_ptr<BaseRecord>> &column_default, const std::vector<std::string> &column_name,
|
||||
int32_t num_workers, int64_t num_samples, int32_t worker_connector_size, int32_t op_connector_size,
|
||||
bool shuffle_files, int32_t num_devices, int32_t device_id);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DBpediaOp() = default;
|
||||
|
||||
/// A print method typically used for debugging
|
||||
/// @param out - The output stream to write output to
|
||||
/// @param show_all - A bool to control if you want to show all info or just a summary
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
/// \brief DatasetName name getter.
|
||||
/// \param[in] upper A bool to control if you want to return uppercase or lowercase Op name.
|
||||
/// \return DatasetName of the current Op.
|
||||
std::string DatasetName(bool upper = false) const { return upper ? "DBpedia" : "dbpedia"; }
|
||||
|
||||
/// \brief Op name getter.
|
||||
/// \return Name of the current Op.
|
||||
std::string Name() const override { return "DBpediaOp"; }
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_DBPEDIA_OP_H_
|
|
@ -83,6 +83,7 @@ constexpr char kCityscapesNode[] = "CityscapesDataset";
|
|||
constexpr char kCLUENode[] = "CLUEDataset";
|
||||
constexpr char kCocoNode[] = "CocoDataset";
|
||||
constexpr char kCSVNode[] = "CSVDataset";
|
||||
constexpr char kDBpediaNode[] = "DBpediaDataset";
|
||||
constexpr char kDIV2KNode[] = "DIV2KDataset";
|
||||
constexpr char kEMnistNode[] = "EMnistDataset";
|
||||
constexpr char kFakeImageNode[] = "FakeImageDataset";
|
||||
|
|
|
@ -12,6 +12,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
|
|||
clue_node.cc
|
||||
coco_node.cc
|
||||
csv_node.cc
|
||||
dbpedia_node.cc
|
||||
div2k_node.cc
|
||||
emnist_node.cc
|
||||
fake_image_node.cc
|
||||
|
|
|
@ -0,0 +1,209 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
DBpediaNode::DBpediaNode(const std::string &dataset_dir, const std::string &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id, std::shared_ptr<DatasetCache> cache)
|
||||
: NonMappableSourceNode(std::move(cache)),
|
||||
dataset_dir_(dataset_dir),
|
||||
usage_(usage),
|
||||
num_samples_(num_samples),
|
||||
shuffle_(shuffle),
|
||||
num_shards_(num_shards),
|
||||
shard_id_(shard_id) {
|
||||
// Update the num_shards_ in global context. this number is only used for now by auto_num_worker_pass. User discretion
|
||||
// is advised. Auto_num_worker_pass is currently an experimental feature which can still work if the num_shards_ isn't
|
||||
// 100% correct. The reason behind is for now, PreBuildSampler doesn't offer a way to return num_shards. Once
|
||||
// PreBuildSampler is phased out, this can be cleaned up.
|
||||
GlobalContext::config_manager()->set_num_shards_for_auto_num_workers(num_shards_);
|
||||
}
|
||||
|
||||
std::shared_ptr<DatasetNode> DBpediaNode::Copy() {
|
||||
auto node =
|
||||
std::make_shared<DBpediaNode>(dataset_dir_, usage_, num_samples_, shuffle_, num_shards_, shard_id_, cache_);
|
||||
return node;
|
||||
}
|
||||
|
||||
void DBpediaNode::Print(std::ostream &out) const {
|
||||
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") +
|
||||
", num_shards: " + std::to_string(num_shards_) + ", shard_id: " + std::to_string(shard_id_) + ")");
|
||||
}
|
||||
|
||||
Status DBpediaNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
RETURN_IF_NOT_OK(ValidateDatasetDirParam("DBpediaNode", dataset_dir_));
|
||||
RETURN_IF_NOT_OK(ValidateStringValue("DBpediaNode", usage_, {"train", "test", "all"}));
|
||||
|
||||
if (num_samples_ < 0) {
|
||||
std::string err_msg = "DBpediaNode: Invalid number of samples: " + std::to_string(num_samples_);
|
||||
MS_LOG(ERROR) << err_msg;
|
||||
RETURN_STATUS_SYNTAX_ERROR(err_msg);
|
||||
}
|
||||
|
||||
RETURN_IF_NOT_OK(ValidateDatasetShardParams("DBpediaNode", num_shards_, shard_id_));
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Function to build DBpediaNode.
|
||||
Status DBpediaNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
|
||||
// Sort the dataset files in a lexicographical order.
|
||||
std::vector<std::string> sorted_dataset_files;
|
||||
RETURN_IF_NOT_OK(WalkAllFiles(dataset_dir_, usage_, &sorted_dataset_files));
|
||||
std::sort(sorted_dataset_files.begin(), sorted_dataset_files.end());
|
||||
|
||||
char field_delim = ',';
|
||||
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
|
||||
std::vector<std::shared_ptr<CsvOp::BaseRecord>> column_default_list;
|
||||
for (auto c : column_names) {
|
||||
column_default_list.push_back(std::make_shared<DBpediaOp::Record<std::string>>(DBpediaOp::STRING, ""));
|
||||
}
|
||||
|
||||
std::shared_ptr<DBpediaOp> dbpedia_op = std::make_shared<DBpediaOp>(
|
||||
sorted_dataset_files, field_delim, column_default_list, column_names, num_workers_, num_samples_,
|
||||
worker_connector_size_, connector_que_size_, shuffle_files, num_shards_, shard_id_);
|
||||
|
||||
RETURN_IF_NOT_OK(dbpedia_op->Init());
|
||||
|
||||
// If a global shuffle is used for DBpedia, it will inject a shuffle op over the DBpedia.
|
||||
// But, if there is a cache in the tree, we do not need the global shuffle and the shuffle op should not be built.
|
||||
// This is achieved in the cache transform pass where we call MakeSimpleProducer to reset DBpedia's shuffle
|
||||
// option to false.
|
||||
if (shuffle_ == ShuffleMode::kGlobal) {
|
||||
// Inject ShuffleOp.
|
||||
std::shared_ptr<DatasetOp> shuffle_op = nullptr;
|
||||
int64_t num_rows = 0;
|
||||
|
||||
// First, get the number of rows in the dataset.
|
||||
RETURN_IF_NOT_OK(DBpediaOp::CountAllFileRows(sorted_dataset_files, column_names.empty(), &num_rows));
|
||||
|
||||
// Add the shuffle op after this op.
|
||||
RETURN_IF_NOT_OK(
|
||||
AddShuffleOp(sorted_dataset_files.size(), num_shards_, num_rows, 0, connector_que_size_, &shuffle_op));
|
||||
shuffle_op->SetTotalRepeats(GetTotalRepeats());
|
||||
shuffle_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
node_ops->push_back(shuffle_op);
|
||||
}
|
||||
dbpedia_op->SetTotalRepeats(GetTotalRepeats());
|
||||
dbpedia_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
node_ops->push_back(dbpedia_op);
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DBpediaNode::WalkAllFiles(const std::string &dataset_dir, const std::string &usage,
|
||||
std::vector<std::string> *dataset_files) {
|
||||
Path train_file_name("train.csv");
|
||||
Path test_file_name("test.csv");
|
||||
Path dir(dataset_dir);
|
||||
if (usage == "train") {
|
||||
Path file_path = dir / train_file_name;
|
||||
dataset_files->push_back(file_path.ToString());
|
||||
} else if (usage == "test") {
|
||||
Path file_path = dir / test_file_name;
|
||||
dataset_files->push_back(file_path.ToString());
|
||||
} else {
|
||||
Path file_path_1 = dir / train_file_name;
|
||||
dataset_files->push_back(file_path_1.ToString());
|
||||
Path file_path_2 = dir / test_file_name;
|
||||
dataset_files->push_back(file_path_2.ToString());
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get the shard id of node.
|
||||
Status DBpediaNode::GetShardId(int32_t *shard_id) {
|
||||
*shard_id = shard_id_;
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get Dataset size.
|
||||
Status DBpediaNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) {
|
||||
if (dataset_size_ > 0) {
|
||||
*dataset_size = dataset_size_;
|
||||
return Status::OK();
|
||||
}
|
||||
int64_t num_rows, sample_size;
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::vector<std::string> dataset_files;
|
||||
RETURN_IF_NOT_OK(WalkAllFiles(dataset_dir_, usage_, &dataset_files));
|
||||
RETURN_IF_NOT_OK(DBpediaOp::CountAllFileRows(dataset_files, column_names.empty(), &num_rows));
|
||||
sample_size = num_samples_;
|
||||
num_rows = static_cast<int64_t>(ceil(num_rows / (1.0 * num_shards_)));
|
||||
*dataset_size = sample_size > 0 ? std::min(num_rows, sample_size) : num_rows;
|
||||
dataset_size_ = *dataset_size;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status DBpediaNode::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["num_parallel_workers"] = num_workers_;
|
||||
args["dataset_dir"] = dataset_dir_;
|
||||
args["usage"] = usage_;
|
||||
args["num_samples"] = num_samples_;
|
||||
args["shuffle"] = shuffle_;
|
||||
args["num_shards"] = num_shards_;
|
||||
args["shard_id"] = shard_id_;
|
||||
if (cache_ != nullptr) {
|
||||
nlohmann::json cache_args;
|
||||
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
|
||||
args["cache"] = cache_args;
|
||||
}
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Note: The following two functions are common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
// DBpedia by itself is a non-mappable dataset that does not support sampling.
|
||||
// However, if a cache operator is injected at some other place higher in the tree, that cache can
|
||||
// inherit this sampler from the leaf, providing sampling support from the caching layer.
|
||||
// That is why we setup the sampler for a leaf node that does not use sampling.
|
||||
Status DBpediaNode::SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) {
|
||||
bool shuffle_files = (shuffle_ == ShuffleMode::kGlobal || shuffle_ == ShuffleMode::kFiles);
|
||||
*sampler = SelectSampler(num_samples_, shuffle_files, num_shards_, shard_id_);
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// If a cache has been added into the ascendant tree over this DBpedia node, then the cache will be executing
|
||||
// a sampler for fetching the data. As such, any options in the DBpedia node need to be reset to its defaults so
|
||||
// that this DBpedia node will produce the full set of data into the cache.
|
||||
Status DBpediaNode::MakeSimpleProducer() {
|
||||
shard_id_ = 0;
|
||||
num_shards_ = 1;
|
||||
shuffle_ = ShuffleMode::kFalse;
|
||||
num_samples_ = 0;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,120 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_DBPEDIA_NODE_H
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_DBPEDIA_NODE_H
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/dbpedia_op.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class DBpediaNode : public NonMappableSourceNode {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
DBpediaNode(const std::string &dataset_dir, const std::string &usage, int64_t num_samples, ShuffleMode shuffle,
|
||||
int32_t num_shards, int32_t shard_id, std::shared_ptr<DatasetCache> cache);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DBpediaNode() = default;
|
||||
|
||||
/// \brief Node name getter.
|
||||
/// \return Name of the current node.
|
||||
std::string Name() const override { return kDBpediaNode; }
|
||||
|
||||
/// \brief Print the description.
|
||||
/// \param out - The output stream to write output to.
|
||||
void Print(std::ostream &out) const override;
|
||||
|
||||
/// \brief Copy the node to a new object.
|
||||
/// \return A shared pointer to the new copy.
|
||||
std::shared_ptr<DatasetNode> Copy() override;
|
||||
|
||||
/// \brief a base class override function to create the required runtime dataset op objects for this class.
|
||||
/// \param node_ops - A vector containing shared pointer to the Dataset Ops that this object will create.
|
||||
/// \return Status Status::OK() if build successfully.
|
||||
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
|
||||
|
||||
/// \brief Parameters validation.
|
||||
/// \return Status Status::OK() if all the parameters are valid.
|
||||
Status ValidateParams() override;
|
||||
|
||||
/// \brief Generate a list of read file names according to usage.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Part of dataset of YahooAnswers.
|
||||
/// \param[in] dataset_files List of filepaths for the dataset files
|
||||
/// \return Status of the function.
|
||||
Status WalkAllFiles(const std::string &dataset_dir, const std::string &usage,
|
||||
std::vector<std::string> *dataset_files);
|
||||
|
||||
/// \brief Get the shard id of node.
|
||||
/// \param[in] shard_id The shard id.
|
||||
/// \return Status Status::OK() if get shard id successfully.
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize.
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter.
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \param[out] dataset_size the size of the dataset.
|
||||
/// \return Status of the function.
|
||||
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) override;
|
||||
|
||||
/// \brief Getter functions.
|
||||
const std::string &DatasetDir() const { return dataset_dir_; }
|
||||
const std::string &Usage() const { return usage_; }
|
||||
int64_t NumSamples() const { return num_samples_; }
|
||||
ShuffleMode Shuffle() const { return shuffle_; }
|
||||
int32_t NumShards() const { return num_shards_; }
|
||||
int32_t ShardId() const { return shard_id_; }
|
||||
|
||||
/// \brief Get the arguments of node.
|
||||
/// \param[out] out_json JSON string of all attributes.
|
||||
/// \return Status of the function.
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
/// \brief DBpedia by itself is a non-mappable dataset that does not support sampling.
|
||||
/// However, if a cache operator is injected at some other place higher in the tree, that cache can
|
||||
/// inherit this sampler from the leaf, providing sampling support from the caching layer.
|
||||
/// That is why we setup the sampler for a leaf node that does not use sampling.
|
||||
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
/// \param[in] sampler The sampler to setup.
|
||||
/// \return Status of the function.
|
||||
Status SetupSamplerForCache(std::shared_ptr<SamplerObj> *sampler) override;
|
||||
|
||||
/// \brief If a cache has been added into the ascendant tree over this DBpedia node, then the cache will be executing
|
||||
/// a sampler for fetching the data. As such, any options in the DBpedia node need to be reset to its defaults so
|
||||
/// that this DBpedia node will produce the full set of data into the cache.
|
||||
/// Note: This function is common among NonMappableSourceNode and should be promoted to its parent class.
|
||||
/// \return Status of the function.
|
||||
Status MakeSimpleProducer() override;
|
||||
|
||||
private:
|
||||
std::string dataset_dir_;
|
||||
std::string usage_;
|
||||
int64_t num_samples_;
|
||||
ShuffleMode shuffle_;
|
||||
int32_t num_shards_;
|
||||
int32_t shard_id_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_DBPEDIA_NODE_H_
|
|
@ -1855,6 +1855,54 @@ inline std::shared_ptr<CSVDataset> CSV(const std::vector<std::string> &dataset_f
|
|||
cache);
|
||||
}
|
||||
|
||||
/// \class DBpediaDataset
|
||||
/// \brief A source dataset for reading and parsing DBpedia dataset.
|
||||
class DBpediaDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Constructor of DBpediaDataset.
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Part of dataset of DBpedia, can be "train", "test" or "all".
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset.
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch.
|
||||
/// Can be any of:
|
||||
/// ShuffleMode.kFalse - No shuffling is performed.
|
||||
/// ShuffleMode.kFiles - Shuffle files only.
|
||||
/// ShuffleMode.kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into.
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
DBpediaDataset(const std::vector<char> &dataset_dir, const std::vector<char> &usage, int64_t num_samples,
|
||||
ShuffleMode shuffle, int32_t num_shards, int32_t shard_id, const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor of DBpediaDataset.
|
||||
~DBpediaDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a DBpediaDataset.
|
||||
/// \note The generated dataset has three columns ["class", "title", "content"].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] usage Part of dataset of DBpedia, can be "train", "test" or "all" (default = "all").
|
||||
/// \param[in] num_samples The number of samples to be included in the dataset.
|
||||
/// (Default = 0, means all samples).
|
||||
/// \param[in] shuffle The mode for shuffling data every epoch (Default=ShuffleMode::kGlobal).
|
||||
/// Can be any of:
|
||||
/// ShuffleMode::kFalse - No shuffling is performed.
|
||||
/// ShuffleMode::kFiles - Shuffle files only.
|
||||
/// ShuffleMode::kGlobal - Shuffle both the files and samples.
|
||||
/// \param[in] num_shards Number of shards that the dataset should be divided into (Default = 1).
|
||||
/// \param[in] shard_id The shard ID within num_shards. This argument should be
|
||||
/// specified only when num_shards is also specified (Default = 0).
|
||||
/// \param[in] cache Tensor cache to use (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the DBpediaDataset
|
||||
inline std::shared_ptr<DBpediaDataset> DBpedia(const std::string &dataset_dir, const std::string &usage = "all",
|
||||
int64_t num_samples = 0, ShuffleMode shuffle = ShuffleMode::kGlobal,
|
||||
int32_t num_shards = 1, int32_t shard_id = 0,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<DBpediaDataset>(StringToChar(dataset_dir), StringToChar(usage), num_samples, shuffle,
|
||||
num_shards, shard_id, cache);
|
||||
}
|
||||
|
||||
/// \class DIV2KDataset
|
||||
/// \brief A source dataset for reading and parsing DIV2K dataset.
|
||||
class DIV2KDataset : public Dataset {
|
||||
|
|
|
@ -68,7 +68,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
|
|||
check_tuple_iterator, check_dict_iterator, check_schema, check_to_device_send, check_flickr_dataset, \
|
||||
check_sb_dataset, check_flowers102dataset, check_cityscapes_dataset, check_usps_dataset, check_div2k_dataset, \
|
||||
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset, check_places365_dataset, \
|
||||
check_photo_tour_dataset, check_ag_news_dataset
|
||||
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset
|
||||
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
|
||||
get_prefetch_size
|
||||
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
|
||||
|
@ -7873,6 +7873,102 @@ class CityscapesDataset(MappableDataset):
|
|||
return cde.CityscapesNode(self.dataset_dir, self.usage, self.quality_mode, self.task, self.decode, self.sampler)
|
||||
|
||||
|
||||
class DBpediaDataset(SourceDataset):
|
||||
"""
|
||||
A source dataset that reads and parses the DBpedia dataset.
|
||||
|
||||
The generated dataset has three columns :py:obj:`[class, title, content]`.
|
||||
The tensor of column :py:obj:`class` is of the string type.
|
||||
The tensor of column :py:obj:`title` is of the string type.
|
||||
The tensor of column :py:obj:`content` is of the string type.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
usage (str, optional): Usage of this dataset, can be `train`, `test` or `all`.
|
||||
`train` will read from 560,000 train samples,
|
||||
`test` will read from 70,000 test samples,
|
||||
`all` will read from all 630,000 samples (default=None, all samples).
|
||||
num_samples (int, optional): The number of samples to be included in the dataset
|
||||
(default=None, will include all text).
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (Union[bool, Shuffle level], optional): Perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL;
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
||||
- Shuffle.GLOBAL: Shuffle both the files and samples.
|
||||
|
||||
- Shuffle.FILES: Shuffle files only.
|
||||
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
|
||||
When this argument is specified, `num_samples` reflects the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
Raises:
|
||||
RuntimeError: If dataset_dir does not contain data files.
|
||||
RuntimeError: If num_parallel_workers exceeds the max thread numbers.
|
||||
RuntimeError: If num_shards is specified but shard_id is None.
|
||||
RuntimeError: If shard_id is specified but num_shards is None.
|
||||
ValueError: If shard_id is invalid (< 0 or >= num_shards).
|
||||
|
||||
Examples:
|
||||
>>> dbpedia_dataset_dir = "/path/to/dbpedia_dataset_directory"
|
||||
>>>
|
||||
>>> # 1) Read 3 samples from DBpedia dataset
|
||||
>>> dataset = ds.DBpediaDataset(dataset_dir=dbpedia_dataset_dir, num_samples=3)
|
||||
>>>
|
||||
>>> # 2) Read train samples from DBpedia dataset
|
||||
>>> dataset = ds.DBpediaDataset(dataset_dir=dbpedia_dataset_dir, usage="train")
|
||||
|
||||
About DBpedia dataset:
|
||||
|
||||
The DBpedia dataset consists of 630,000 text samples in 14 classes, there are 560,000 samples in the train.csv
|
||||
and 70,000 samples in the test.csv.
|
||||
The 14 different classes represent Company, EducationaInstitution, Artist, Athlete, OfficeHolder,
|
||||
MeanOfTransportation, Building, NaturalPlace, Village, Animal, Plant, Album, Film, WrittenWork.
|
||||
|
||||
Here is the original DBpedia dataset structure.
|
||||
You can unzip the dataset files into this directory structure and read by Mindspore's API.
|
||||
|
||||
.. code-block::
|
||||
|
||||
.
|
||||
└── dbpedia_dataset_dir
|
||||
├── train.csv
|
||||
├── test.csv
|
||||
├── classes.txt
|
||||
└── readme.txt
|
||||
|
||||
.. code-block::
|
||||
|
||||
@article{DBpedia,
|
||||
title = {DBPedia Ontology Classification Dataset},
|
||||
author = {Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
|
||||
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
|
||||
Sören Auer, Christian Bizer},
|
||||
year = {2015},
|
||||
howpublished = {http://dbpedia.org}
|
||||
}
|
||||
"""
|
||||
|
||||
@check_dbpedia_dataset
|
||||
def __init__(self, dataset_dir, usage=None, num_samples=None, num_parallel_workers=None, shuffle=Shuffle.GLOBAL,
|
||||
num_shards=None, shard_id=None, cache=None):
|
||||
super().__init__(num_parallel_workers=num_parallel_workers, num_samples=num_samples, shuffle=shuffle,
|
||||
num_shards=num_shards, shard_id=shard_id, cache=cache)
|
||||
self.dataset_dir = dataset_dir
|
||||
self.usage = replace_none(usage, "all")
|
||||
|
||||
def parse(self, children=None):
|
||||
return cde.DBpediaNode(self.dataset_dir, self.usage, self.num_samples, self.shuffle_flag, self.num_shards,
|
||||
self.shard_id)
|
||||
|
||||
|
||||
class DIV2KDataset(MappableDataset):
|
||||
"""
|
||||
A source dataset for reading and parsing DIV2KDataset dataset.
|
||||
|
|
|
@ -1752,4 +1752,31 @@ def check_ag_news_dataset(method):
|
|||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
|
||||
def check_dbpedia_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original DBpediaDataset."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
_, param_dict = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
|
||||
|
||||
dataset_dir = param_dict.get('dataset_dir')
|
||||
check_dir(dataset_dir)
|
||||
|
||||
usage = param_dict.get('usage')
|
||||
if usage is not None:
|
||||
check_valid_str(usage, ["train", "test", "all"], "usage")
|
||||
|
||||
validate_dataset_param_value(nreq_param_int, param_dict, int)
|
||||
|
||||
check_sampler_shuffle_shard_options(param_dict)
|
||||
|
||||
cache = param_dict.get('cache')
|
||||
check_cache_option(cache)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
|
|
@ -22,6 +22,7 @@ SET(DE_UT_SRCS
|
|||
c_api_dataset_coco_test.cc
|
||||
c_api_dataset_config_test.cc
|
||||
c_api_dataset_csv_test.cc
|
||||
c_api_dataset_dbpedia_test.cc
|
||||
c_api_dataset_div2k_test.cc
|
||||
c_api_dataset_emnist_test.cc
|
||||
c_api_dataset_fake_image_test.cc
|
||||
|
|
|
@ -0,0 +1,527 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/common.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/dbpedia_node.h"
|
||||
#include "minddata/dataset/include/dataset/datasets.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
|
||||
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
||||
protected:
|
||||
};
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: read test data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetBasic) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetBasic.";
|
||||
|
||||
// Create a DBpedia Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterator the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"5", "My Bedroom", "Look at this room. It's my bedroom."},
|
||||
{"8", "My English teacher", "She has two big eyes and a small mouth."},
|
||||
{"6", "My Holiday", "I have a lot of fun every day."}};
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
// Expect 3 samples
|
||||
EXPECT_EQ(i, 3);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: read train data and test data.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetUsageAll) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetUsageAll.";
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "all", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterator the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"5", "My Bedroom", "Look at this room. It's my bedroom."},
|
||||
{"7", "My Last Weekend", "I was busy last week, but I have fun every day."},
|
||||
{"8", "My English teacher", "She has two big eyes and a small mouth."},
|
||||
{"5", "My Friend", "She likes singing, dancing and swimming very much."},
|
||||
{"6", "My Holiday", "I have a lot of fun every day."},
|
||||
{"8", "I Can Do Housework", "My mother is busy, so I often help my mother with the housework."}};
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
// Expect 6 samples
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: includes tests for shape, type, size.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetGetters) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetGetters.";
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "test", 0, ShuffleMode::kFalse);
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
|
||||
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
|
||||
EXPECT_EQ(types.size(), 3);
|
||||
EXPECT_EQ(types[0].ToString(), "string");
|
||||
EXPECT_EQ(types[1].ToString(), "string");
|
||||
EXPECT_EQ(types[2].ToString(), "string");
|
||||
EXPECT_EQ(shapes.size(), 3);
|
||||
EXPECT_EQ(shapes[0].ToString(), "<>");
|
||||
EXPECT_EQ(shapes[1].ToString(), "<>");
|
||||
EXPECT_EQ(shapes[2].ToString(), "<>");
|
||||
EXPECT_EQ(ds->GetBatchSize(), 1);
|
||||
EXPECT_EQ(ds->GetRepeatCount(), 1);
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 3);
|
||||
EXPECT_EQ(ds->GetColumnNames(), column_names);
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: read 2 samples from train file.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetNumSamples) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetNumSamples.";
|
||||
|
||||
// Create a DBpediaDataset
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "train", 2, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"7", "My Last Weekend", "I was busy last week, but I have fun every day."},
|
||||
{"5", "My Friend", "She likes singing, dancing and swimming very much."}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 2 samples
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: test in a distributed state.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetDistribution) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetDistribution.";
|
||||
|
||||
// Create a DBpediaDataset
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "train", 0, ShuffleMode::kFalse, 2, 0);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"7", "My Last Weekend", "I was busy last week, but I have fun every day."},
|
||||
{"5", "My Friend", "She likes singing, dancing and swimming very much."}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 2 samples
|
||||
EXPECT_EQ(i, 2);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: test with invalid input.
|
||||
/// Expectation: throw error messages when certain errors occur.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetFail.";
|
||||
// Create a DBpedia Dataset
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::string invalid_folder_path = "./NotExistPath";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
|
||||
// Test invalid folder_path
|
||||
std::shared_ptr<Dataset> ds0 = DBpedia(invalid_folder_path, "all", -1, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds0, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter0 = ds0->CreateIterator();
|
||||
// Expect failure: invalid DBpedia input
|
||||
EXPECT_EQ(iter0, nullptr);
|
||||
|
||||
// Test invalid usage
|
||||
std::shared_ptr<Dataset> ds1 = DBpedia(folder_path, "invalid_usage", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter1 = ds1->CreateIterator();
|
||||
// Expect failure: invalid DBpedia input
|
||||
EXPECT_EQ(iter1, nullptr);
|
||||
|
||||
// Test invalid num_samples < -1
|
||||
std::shared_ptr<Dataset> ds2 = DBpedia(folder_path, "all", -1, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter2 = ds2->CreateIterator();
|
||||
// Expect failure: invalid DBpedia input
|
||||
EXPECT_EQ(iter2, nullptr);
|
||||
|
||||
// Test invalid num_shards < 1
|
||||
std::shared_ptr<Dataset> ds3 = DBpedia(folder_path, "all", 0, ShuffleMode::kFalse, 0);
|
||||
EXPECT_NE(ds3, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter3 = ds3->CreateIterator();
|
||||
// Expect failure: invalid DBpedia input
|
||||
EXPECT_EQ(iter3, nullptr);
|
||||
|
||||
// Test invalid shard_id >= num_shards
|
||||
std::shared_ptr<Dataset> ds4 = DBpedia(folder_path, "all", 0, ShuffleMode::kFalse, 2, 2);
|
||||
EXPECT_NE(ds4, nullptr);
|
||||
// Create an iterator over the result of the above dataset
|
||||
std::shared_ptr<Iterator> iter4 = ds4->CreateIterator();
|
||||
// Expect failure: invalid DBpedia input
|
||||
EXPECT_EQ(iter4, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: read data with pipeline from test file.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetWithPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetWithPipeline.";
|
||||
|
||||
// Create two DBpedia Dataset, with single DBpedia file.
|
||||
std::string dataset_dir = datasets_root_path_ + "/testDBpedia/";
|
||||
|
||||
std::shared_ptr<Dataset> ds1 = DBpedia(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
std::shared_ptr<Dataset> ds2 = DBpedia(dataset_dir, "test", 0, ShuffleMode::kFalse);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Repeat operation on ds.
|
||||
int32_t repeat_num = 2;
|
||||
ds1 = ds1->Repeat(repeat_num);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
repeat_num = 3;
|
||||
ds2 = ds2->Repeat(repeat_num);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Project operation on ds.
|
||||
std::vector<std::string> column_project = {"class"};
|
||||
ds1 = ds1->Project(column_project);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
ds2 = ds2->Project(column_project);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create a Concat operation on the ds.
|
||||
ds1 = ds1->Concat({ds2});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto text = row["class"];
|
||||
MS_LOG(INFO) << "Tensor text shape: " << text.Shape();
|
||||
i++;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
// Expect 15 samples.
|
||||
EXPECT_EQ(i, 15);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: test with shuffle files.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetShuffleFilesA) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetShuffleFilesA.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(130);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "all", 0, ShuffleMode::kFiles);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"7", "My Last Weekend", "I was busy last week, but I have fun every day."},
|
||||
{"5", "My Bedroom", "Look at this room. It's my bedroom."},
|
||||
{"5", "My Friend", "She likes singing, dancing and swimming very much."},
|
||||
{"8", "My English teacher", "She has two big eyes and a small mouth."},
|
||||
{"8", "I Can Do Housework", "My mother is busy, so I often help my mother with the housework."},
|
||||
{"6", "My Holiday", "I have a lot of fun every day."}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 6 samples
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: test with shuffle in file.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetShuffleFilesB) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetShuffleFilesB.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(130);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "test", 0, ShuffleMode::kInfile);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"5", "My Bedroom", "Look at this room. It's my bedroom."},
|
||||
{"8", "My English teacher", "She has two big eyes and a small mouth."},
|
||||
{"6", "My Holiday", "I have a lot of fun every day."}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 3 samples
|
||||
EXPECT_EQ(i, 3);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
||||
|
||||
/// Feature: DBpedia.
|
||||
/// Description: test with global shuffle.
|
||||
/// Expectation: the data is processed successfully.
|
||||
TEST_F(MindDataTestPipeline, TestDBpediaDatasetShuffleGlobal) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestDBpediaDatasetShuffleFilesGlobal.";
|
||||
|
||||
// Set configuration
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
uint32_t original_num_parallel_workers = GlobalContext::config_manager()->num_parallel_workers();
|
||||
MS_LOG(DEBUG) << "ORIGINAL seed: " << original_seed << ", num_parallel_workers: " << original_num_parallel_workers;
|
||||
GlobalContext::config_manager()->set_seed(130);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(4);
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testDBpedia/";
|
||||
std::vector<std::string> column_names = {"class", "title", "content"};
|
||||
std::shared_ptr<Dataset> ds = DBpedia(folder_path, "test", 0, ShuffleMode::kGlobal);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
EXPECT_NE(row.find("class"), row.end());
|
||||
std::vector<std::vector<std::string>> expected_result = {
|
||||
{"5", "My Bedroom", "Look at this room. It's my bedroom."},
|
||||
{"6", "My Holiday", "I have a lot of fun every day."},
|
||||
{"8", "My English teacher", "She has two big eyes and a small mouth."}};
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
for (int j = 0; j < column_names.size(); j++) {
|
||||
auto text = row[column_names[j]];
|
||||
std::shared_ptr<Tensor> de_text;
|
||||
ASSERT_OK(Tensor::CreateFromMSTensor(text, &de_text));
|
||||
std::string_view sv;
|
||||
ASSERT_OK(de_text->GetItemAt(&sv, {}));
|
||||
std::string ss(sv);
|
||||
EXPECT_STREQ(ss.c_str(), expected_result[i][j].c_str());
|
||||
}
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
|
||||
// Expect 3 samples
|
||||
EXPECT_EQ(i, 3);
|
||||
|
||||
// Manually terminate the pipeline
|
||||
iter->Stop();
|
||||
|
||||
// Restore configuration
|
||||
GlobalContext::config_manager()->set_seed(original_seed);
|
||||
GlobalContext::config_manager()->set_num_parallel_workers(original_num_parallel_workers);
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
5,"My Bedroom","Look at this room. It's my bedroom."
|
||||
8,"My English teacher","She has two big eyes and a small mouth."
|
||||
6,"My Holiday","I have a lot of fun every day."
|
|
|
@ -0,0 +1,3 @@
|
|||
7,"My Last Weekend","I was busy last week, but I have fun every day."
|
||||
5,"My Friend","She likes singing, dancing and swimming very much."
|
||||
8,"I Can Do Housework","My mother is busy, so I often help my mother with the housework."
|
|
|
@ -0,0 +1,135 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import mindspore.dataset as ds
|
||||
|
||||
DATA_DIR = '../data/dataset/testDBpedia/'
|
||||
|
||||
|
||||
def test_dbpedia_dataset_basic():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: read data from train file.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
buffer = []
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="train", shuffle=False)
|
||||
data = data.repeat(2)
|
||||
data = data.skip(3)
|
||||
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
buffer.append(d)
|
||||
assert len(buffer) == 3
|
||||
|
||||
|
||||
def test_dbpedia_dataset_quoted():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: read the data and compare it to expectations.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
buffer = []
|
||||
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
buffer.extend([d['class'].item().decode("utf8"),
|
||||
d['title'].item().decode("utf8"),
|
||||
d['content'].item().decode("utf8")])
|
||||
assert buffer == ["5", "My Bedroom", "Look at this room. It's my bedroom.",
|
||||
"8", "My English teacher", "She has two big eyes and a small mouth.",
|
||||
"6", "My Holiday", "I have a lot of fun every day."]
|
||||
|
||||
|
||||
def test_dbpedia_dataset_usage():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: read all files with usage all.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
buffer = []
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="all", shuffle=False)
|
||||
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
buffer.append(d)
|
||||
assert len(buffer) == 6
|
||||
|
||||
|
||||
def test_dbpedia_dataset_get_datasetsize():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: test get_dataset_size function.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
size = data.get_dataset_size()
|
||||
assert size == 3
|
||||
|
||||
|
||||
def test_dbpedia_dataset_distribution():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: test in a distributed state.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False, num_shards=2, shard_id=0)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 2
|
||||
|
||||
|
||||
def test_dbpedia_dataset_num_samples():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: test num_samples parameter.
|
||||
Expectation: the data is processed successfully.
|
||||
"""
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False, num_samples=2)
|
||||
count = 0
|
||||
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count += 1
|
||||
assert count == 2
|
||||
|
||||
|
||||
def test_dbpedia_dataset_exception():
|
||||
"""
|
||||
Feature: DBpediaDataset.
|
||||
Description: test the wrong input.
|
||||
Expectation: Unable to read data properly.
|
||||
"""
|
||||
def exception_func(item):
|
||||
raise Exception("Error occur!")
|
||||
try:
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
data = data.map(operations=exception_func, input_columns=["class"], num_parallel_workers=1)
|
||||
for _ in data.create_dict_iterator():
|
||||
pass
|
||||
assert False
|
||||
except RuntimeError as e:
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
|
||||
try:
|
||||
data = ds.DBpediaDataset(DATA_DIR, usage="test", shuffle=False)
|
||||
data = data.map(operations=exception_func, input_columns=["content"], num_parallel_workers=1)
|
||||
for _ in data.create_dict_iterator():
|
||||
pass
|
||||
assert False
|
||||
except RuntimeError as e:
|
||||
assert "map operation: [PyFunc] failed. The corresponding data files" in str(e)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_dbpedia_dataset_basic()
|
||||
test_dbpedia_dataset_quoted()
|
||||
test_dbpedia_dataset_usage()
|
||||
test_dbpedia_dataset_get_datasetsize()
|
||||
test_dbpedia_dataset_distribution()
|
||||
test_dbpedia_dataset_num_samples()
|
||||
test_dbpedia_dataset_exception()
|
Loading…
Reference in New Issue