forked from mindspore-Ecosystem/mindspore
auto parallel dynamic
This commit is contained in:
parent
e7a6ae63bc
commit
0cfe72cd22
|
@ -808,6 +808,61 @@ double LayerNormCost::GetForwardComputationCost(const std::vector<TensorInfo> &i
|
|||
return result;
|
||||
}
|
||||
|
||||
double UniqueCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const {
|
||||
return 0.0;
|
||||
}
|
||||
double UniqueCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const {
|
||||
double result = 0.0;
|
||||
if (is_parameter_[0]) {
|
||||
TensorInfo input = inputs[0];
|
||||
CheckGlobalDeviceManager();
|
||||
MS_EXCEPTION_IF_NULL(g_device_manager);
|
||||
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
|
||||
Shape input_shape = input.shape();
|
||||
Shape input_slice_shape = input.slice_shape();
|
||||
int32_t used_device_num = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); ++i) {
|
||||
used_device_num *= input_shape[i] / input_slice_shape[i];
|
||||
}
|
||||
if (total_device_num != IntToSize(used_device_num)) {
|
||||
result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
double UniqueCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs,
|
||||
const std::vector<TensorInfo> &outputs, int32_t stage_id) const {
|
||||
// In forward phase, the computation cost = slice(A) + slice(B)
|
||||
Shape input_slice_shape = inputs[0].slice_shape();
|
||||
double result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
|
||||
return result;
|
||||
}
|
||||
double UniqueCost::GetBackwardComputationCost(const std::vector<TensorInfo> &inputs,
|
||||
const std::vector<TensorInfo> &outputs, int32_t stage_id) const {
|
||||
// In backward phase, the computation cost = (0 or 1) allreduce(slice(B))
|
||||
double result = 0.0;
|
||||
if (is_parameter_[0]) {
|
||||
TensorInfo input = inputs[0]; // tensor B
|
||||
CheckGlobalDeviceManager();
|
||||
MS_EXCEPTION_IF_NULL(g_device_manager);
|
||||
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
|
||||
|
||||
Shape input_shape = input.shape();
|
||||
Shape input_slice_shape = input.slice_shape();
|
||||
int32_t used_device_num = 1;
|
||||
for (size_t i = 0; i < input_shape.size(); ++i) {
|
||||
used_device_num *= input_shape[i] / input_slice_shape[i];
|
||||
}
|
||||
|
||||
if (total_device_num != IntToSize(used_device_num)) {
|
||||
result += ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
double GatherV2PCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const {
|
||||
double result = 0.0;
|
||||
|
|
|
@ -606,6 +606,32 @@ class LayerNormCost : public OperatorCost {
|
|||
|
||||
using DropOutCostPtr = std::shared_ptr<DropOutCost>;
|
||||
|
||||
class UniqueCost : public OperatorCost {
|
||||
public:
|
||||
explicit UniqueCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
|
||||
UniqueCost() : OperatorCost(true) {}
|
||||
~UniqueCost() override = default;
|
||||
|
||||
double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const override {
|
||||
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
|
||||
}
|
||||
double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const override;
|
||||
double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const override;
|
||||
double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const override {
|
||||
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
|
||||
}
|
||||
double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t stage_id) const override;
|
||||
double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
|
||||
int32_t) const override;
|
||||
};
|
||||
|
||||
using UniqueCostPtr = std::shared_ptr<UniqueCost>;
|
||||
|
||||
class GatherV2Cost : public OperatorCost {
|
||||
public:
|
||||
explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
|
||||
|
|
|
@ -182,6 +182,7 @@ REGISTER(DropoutInfo);
|
|||
REGISTER(PackInfo);
|
||||
REGISTER(ConcatInfo);
|
||||
REGISTER(SplitInfo);
|
||||
REGISTER(UniqueInfo);
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -151,6 +151,10 @@ Status GatherV2PInfo::GetAttrs() {
|
|||
MS_LOG(ERROR) << name_ << ": The axis or offset must be 0 if manual split, bug got " << axis_;
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (std::find(inputs_shape_[1].begin(), inputs_shape_[1].end(), -1) != inputs_shape_[1].end()) {
|
||||
dynamic_shape_indices_ = true;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
|
@ -240,7 +244,7 @@ Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
|
|||
|
||||
// axis=0, index_shape(0)%param_strategy(0) must be 0
|
||||
Shape index_shape = inputs_shape_.at(1);
|
||||
if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0)) {
|
||||
if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0) && !dynamic_shape_indices_) {
|
||||
MS_LOG(DEBUG) << name_ << ": index_shape(0) can't be divided by param_strategy(0).";
|
||||
return FAILED;
|
||||
}
|
||||
|
@ -357,13 +361,7 @@ Status GatherV2PInfo::InferDevMatrixShape() {
|
|||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status GatherV2PInfo::InferTensorMap() {
|
||||
if (manual_split_) {
|
||||
inputs_tensor_map_.push_back({1, 0});
|
||||
inputs_tensor_map_.push_back({-1, 1});
|
||||
outputs_tensor_map_.push_back({-1, 1, 0});
|
||||
return SUCCESS;
|
||||
}
|
||||
void GatherV2PInfo::InferInputsTensorMap() {
|
||||
// infer input tensor map
|
||||
// param_strategy(axis) != 1
|
||||
size_t param_size = inputs_shape_.at(0).size();
|
||||
|
@ -373,7 +371,7 @@ Status GatherV2PInfo::InferTensorMap() {
|
|||
Shape tensor_map_params;
|
||||
auto param_strategy = strategy_->GetInputDim().at(0);
|
||||
if (param_strategy.at(IntToSize(axis_)) != 1) {
|
||||
tensor_map_index.insert(tensor_map_index.begin(), index_size, -1);
|
||||
tensor_map_index.insert(tensor_map_index.begin(), index_size, MAP_NONE);
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
tensor_map_params.push_back(SizeToInt(i));
|
||||
}
|
||||
|
@ -386,9 +384,17 @@ Status GatherV2PInfo::InferTensorMap() {
|
|||
tensor_map_index.push_back(SizeToInt(index_size - i - 1));
|
||||
}
|
||||
}
|
||||
inputs_tensor_map_.emplace_back(std::move(tensor_map_params));
|
||||
inputs_tensor_map_.emplace_back(std::move(tensor_map_index));
|
||||
}
|
||||
|
||||
void GatherV2PInfo::InferOutputsTensorMap() {
|
||||
// infer output tensor map
|
||||
size_t param_size = inputs_shape_.at(0).size();
|
||||
size_t index_size = inputs_shape_.at(1).size();
|
||||
size_t total_size = param_size + index_size;
|
||||
Shape tensor_map_out;
|
||||
auto param_strategy = strategy_->GetInputDim().at(0);
|
||||
if (param_strategy.at(IntToSize(axis_)) == 1) {
|
||||
// param_strategy(axis) == 1
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
|
@ -403,25 +409,40 @@ Status GatherV2PInfo::InferTensorMap() {
|
|||
} else {
|
||||
// param_strategy(axis) != 1
|
||||
if (axis_ == 0) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), 0);
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1);
|
||||
if (dynamic_shape_indices_) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), MAP_NONE);
|
||||
} else {
|
||||
tensor_map_out.insert(tensor_map_out.end(), 0);
|
||||
}
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, MAP_NONE);
|
||||
for (size_t i = 1; i < param_size; ++i) {
|
||||
tensor_map_out.push_back(i);
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < param_size; ++i) {
|
||||
if (i == IntToSize(axis_)) {
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size, -1);
|
||||
tensor_map_out.insert(tensor_map_out.end(), index_size, MAP_NONE);
|
||||
} else {
|
||||
if (i == 0 && dynamic_shape_indices_) {
|
||||
tensor_map_out.push_back(MAP_NONE);
|
||||
}
|
||||
tensor_map_out.push_back(SizeToInt(param_size - i - 1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inputs_tensor_map_.emplace_back(std::move(tensor_map_params));
|
||||
inputs_tensor_map_.emplace_back(std::move(tensor_map_index));
|
||||
outputs_tensor_map_.emplace_back(std::move(tensor_map_out));
|
||||
}
|
||||
|
||||
Status GatherV2PInfo::InferTensorMap() {
|
||||
if (manual_split_) {
|
||||
inputs_tensor_map_.push_back({1, 0});
|
||||
inputs_tensor_map_.push_back({-1, 1});
|
||||
outputs_tensor_map_.push_back({-1, 1, 0});
|
||||
return SUCCESS;
|
||||
}
|
||||
InferInputsTensorMap();
|
||||
InferOutputsTensorMap();
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
@ -57,6 +57,8 @@ class GatherV2PInfo : public OperatorInfo {
|
|||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
void InferInputsTensorMap();
|
||||
void InferOutputsTensorMap();
|
||||
Status GetAttrs() override;
|
||||
|
||||
Status ComputeReplaceGraph(const CNodePtr &cnode);
|
||||
|
@ -77,6 +79,7 @@ class GatherV2PInfo : public OperatorInfo {
|
|||
Shape out_dev_matrix_shape_;
|
||||
Group group_;
|
||||
bool manual_split_ = false;
|
||||
bool dynamic_shape_indices_ = false;
|
||||
std::vector<int64_t> param_split_shapes_;
|
||||
std::vector<int64_t> index_offsets_;
|
||||
};
|
||||
|
|
|
@ -43,5 +43,6 @@
|
|||
#include "frontend/parallel/ops_info/split_info.h"
|
||||
#include "frontend/parallel/ops_info/pack_info.h"
|
||||
#include "frontend/parallel/ops_info/broadcast_to_info.h"
|
||||
#include "frontend/parallel/ops_info/unique_info.h"
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_
|
||||
|
|
|
@ -48,6 +48,9 @@ constexpr size_t DROPOUT_DO_MASK_KEEP_PROB_INDEX = 3;
|
|||
constexpr size_t SoftmaxCrossEntropyWithLogitsAttrSize = 1;
|
||||
constexpr size_t SoftmaxCrossEntropyWithLogitsInputsSize = 2;
|
||||
constexpr size_t SoftmaxCrossEntropyWithLogitsOutputsSize = 2;
|
||||
constexpr size_t UNIQUE_INPUTS_SIZE = 1;
|
||||
constexpr size_t UNIQUE_INPUT_SIZE = 1;
|
||||
constexpr size_t UNIQUE_OUTPUTS_SIZE = 2;
|
||||
constexpr double EPS = 1e-6;
|
||||
constexpr double INF = 1e20;
|
||||
|
||||
|
@ -285,6 +288,7 @@ constexpr char DEPTHWISE_CONV2D[] = "DepthwiseConv2D";
|
|||
constexpr char ADD[] = "Add";
|
||||
constexpr char DROPOUT[] = "Dropout";
|
||||
constexpr char KStridedSlice[] = "StridedSlice";
|
||||
constexpr char UNIQUE[] = "Unique";
|
||||
|
||||
// Parallel don't care
|
||||
constexpr char TUPLE_GETITEM[] = "tuple_getitem";
|
||||
|
|
|
@ -0,0 +1,192 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/unique_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
#include "frontend/parallel/context.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
/*
|
||||
* unique has one input, two outputs. Currently, unique cannot be split.
|
||||
*/
|
||||
Status UniqueInfo::InferTensorMap() {
|
||||
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
|
||||
for (auto shp : inputs_shape_) {
|
||||
TensorMap out_tensor_map;
|
||||
TensorMap in_tensor_map;
|
||||
for (size_t i = 0; i < shp.size(); ++i) {
|
||||
in_tensor_map.push_back(MAP_NONE);
|
||||
out_tensor_map.push_back(MAP_NONE);
|
||||
}
|
||||
inputs_tensor_map_.push_back(in_tensor_map);
|
||||
outputs_tensor_map_.push_back(out_tensor_map);
|
||||
outputs_tensor_map_.push_back(out_tensor_map);
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout) {
|
||||
if (inputs_layout == nullptr || outputs_layout == nullptr) {
|
||||
MS_LOG(ERROR) << name_ << " : The layout is null.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorLayout input_layout;
|
||||
TensorLayout output_layout;
|
||||
TensorLayout index_layout;
|
||||
if ((input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) ||
|
||||
(output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) ||
|
||||
(index_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[1], outputs_shape_[1]) != SUCCESS)) {
|
||||
return FAILED;
|
||||
}
|
||||
inputs_layout->push_back(input_layout);
|
||||
outputs_layout->push_back(output_layout);
|
||||
outputs_layout->push_back(index_layout);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::InferTensorInfo() {
|
||||
TensorLayouts inputs_layout;
|
||||
TensorLayouts outputs_layout;
|
||||
if (InferTensorLayout(&inputs_layout, &outputs_layout) != SUCCESS) {
|
||||
return FAILED;
|
||||
}
|
||||
for (size_t i = 0; i < inputs_layout.size(); ++i) {
|
||||
TensorInfo input_tensor_info(inputs_layout[i]);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
}
|
||||
for (size_t i = 0; i < outputs_layout.size(); ++i) {
|
||||
TensorInfo output_tensor_info(outputs_layout[i]);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::InferDevMatrixShape() {
|
||||
dev_matrix_shape_.push_back(dev_num_);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << " : Init success";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
Strategys stras = strategy->GetInputDim();
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy.";
|
||||
return FAILED;
|
||||
}
|
||||
for (Dimensions stra : stras) {
|
||||
if (stra.size() != UNIQUE_INPUT_SIZE) {
|
||||
MS_LOG(ERROR) << name_ << " : Invalid strategy.";
|
||||
return FAILED;
|
||||
}
|
||||
}
|
||||
int32_t stage = strategy->GetInputStage();
|
||||
int32_t dev_num = SizeToInt(g_device_manager->GetDeviceListByStageId(stage).size());
|
||||
dev_num_ = dev_num;
|
||||
if (stras[0][0] != 1) {
|
||||
MS_LOG(ERROR) << "Currently, unique only support repeat calculate in all devices";
|
||||
return FAILED;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::GetAttrs() {
|
||||
if ((inputs_shape_.size() != UNIQUE_INPUTS_SIZE) || (outputs_shape_.size() != UNIQUE_OUTPUTS_SIZE)) {
|
||||
MS_LOG(ERROR) << name_ << ": Inputs shape size " << inputs_shape_.size() << " or outputs shape size "
|
||||
<< outputs_shape_.size() << " is wrong.";
|
||||
return FAILED;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::InferMirrorOps() {
|
||||
mirror_ops_.clear();
|
||||
|
||||
Shape tensor_map = inputs_tensor_map_[0];
|
||||
std::vector<Group> group;
|
||||
if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Create group failed.";
|
||||
return FAILED;
|
||||
}
|
||||
OperatorVector mirror_op;
|
||||
if (group.empty()) {
|
||||
MS_LOG(INFO) << name_ << " : The mirror ops is empty.";
|
||||
return SUCCESS;
|
||||
} else {
|
||||
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
|
||||
mirror_ops_.push_back(mirror_op);
|
||||
std::string group_name = group[0].name();
|
||||
MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name;
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
|
||||
return FAILED;
|
||||
}
|
||||
MS_LOG(INFO) << name_ << " : Init for cost model success.";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status UniqueInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
|
||||
|
||||
Status UniqueInfo::GenerateStrategies(int32_t stage_id) {
|
||||
if (inputs_shape_.size() != UNIQUE_INPUTS_SIZE) {
|
||||
return FAILED;
|
||||
}
|
||||
if (inputs_shape_[0].size() != UNIQUE_INPUT_SIZE) {
|
||||
return FAILED;
|
||||
}
|
||||
Shape input0_split;
|
||||
input0_split.emplace_back(0);
|
||||
Shapes splittable_inputs = {input0_split};
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": GenerateStrategiesForIndependentInputs failed";
|
||||
return FAILED;
|
||||
}
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
class UniqueInfo : public OperatorInfo {
|
||||
public:
|
||||
UniqueInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<GetNextCost>(false)) {}
|
||||
~UniqueInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
Status GenerateStrategies(int32_t stage_id) override;
|
||||
|
||||
protected:
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status GetAttrs() override;
|
||||
Status InferTensorMap() override;
|
||||
Status InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout);
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override { return SUCCESS; }
|
||||
Status InferAsLossDivisor() override { return SUCCESS; }
|
||||
|
||||
private:
|
||||
int32_t dev_num_ = 1;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_
|
|
@ -285,7 +285,7 @@ bool IsSplittableOperator(const std::string &op_name) {
|
|||
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO, ABS, ACOSH, ASIN, ASINH, ATAN, ATANH, CEIL, COSH,
|
||||
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
|
||||
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
|
||||
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD};
|
||||
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE};
|
||||
// clang-format on
|
||||
|
||||
auto iter = splittable_op.find(op_name);
|
||||
|
|
|
@ -39,7 +39,7 @@ Status Arrangement::Init(const Shape &array) {
|
|||
}
|
||||
|
||||
bool Arrangement::IsValidArrangement() {
|
||||
return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0; });
|
||||
return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0 && value != -1; });
|
||||
}
|
||||
|
||||
void Arrangement::ComputeSize() {
|
||||
|
|
|
@ -21,7 +21,19 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
Status RedistributionLayoutTransfer::CheckValidTransfer() { return Status::SUCCESS; }
|
||||
Status RedistributionLayoutTransfer::CheckValidTransfer() {
|
||||
Shape from_shape = from_in_.tensor_shape().array();
|
||||
if (std::find(from_shape.begin(), from_shape.end(), -1) != from_shape.end()) {
|
||||
is_dynamic_shape_ = true;
|
||||
if (from_in_ != to_in_) {
|
||||
MS_LOG(ERROR) << "In dynamic shape scene, the from_tensor_shape should be equal to to_tensor_shape";
|
||||
MS_LOG(ERROR) << "from_in layout" << from_in_.ToString();
|
||||
MS_LOG(ERROR) << "to_in layout" << to_in_.ToString();
|
||||
return Status::FAILED;
|
||||
}
|
||||
}
|
||||
return Status::SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
* unify device arrangement between in_layout and out_layout
|
||||
|
|
|
@ -29,10 +29,12 @@ class RedistributionLayoutTransfer : public LayoutTransfer {
|
|||
RedistributionLayoutTransfer() = default;
|
||||
~RedistributionLayoutTransfer() override = default;
|
||||
std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangementAndTensorShape() const;
|
||||
bool IsDynamicShape() const { return is_dynamic_shape_; }
|
||||
|
||||
private:
|
||||
Status CheckValidTransfer() override;
|
||||
std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangement() const;
|
||||
bool is_dynamic_shape_ = false;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -357,6 +357,10 @@ bool TensorLayout::operator==(const TensorLayout &t1) const {
|
|||
return (IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1));
|
||||
}
|
||||
|
||||
bool TensorLayout::operator!=(const TensorLayout &t1) const {
|
||||
return !(IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1));
|
||||
}
|
||||
|
||||
/*
|
||||
* remove elements equal to 1 in tensor_shape, if all elements are 1, squeeze the tensor_shape to [ 1 ]
|
||||
* example 1:
|
||||
|
|
|
@ -82,6 +82,8 @@ class TensorLayout {
|
|||
|
||||
bool operator==(const TensorLayout &t1) const;
|
||||
|
||||
bool operator!=(const TensorLayout &t1) const;
|
||||
|
||||
bool TensorShapeCanBeExpanded(const Arrangement &expanded_shape) const;
|
||||
|
||||
std::shared_ptr<Arrangement> ComputeExpandedTensorShape(const Arrangement &expand_shape) const;
|
||||
|
|
|
@ -82,17 +82,24 @@ RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorL
|
|||
if (status != Status::SUCCESS) {
|
||||
return nullptr;
|
||||
}
|
||||
std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape();
|
||||
if (ptr == nullptr) {
|
||||
MS_LOG(ERROR) << "Infer tensor layout return nullptr!";
|
||||
return nullptr;
|
||||
TensorLayout from_layout;
|
||||
TensorLayout to_layout;
|
||||
if (layout_transfer.IsDynamicShape()) {
|
||||
from_layout = layout_transfer.from_in();
|
||||
to_layout = layout_transfer.to_in();
|
||||
} else {
|
||||
std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape();
|
||||
if (ptr == nullptr) {
|
||||
MS_LOG(ERROR) << "Infer tensor layout return nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
if (!ptr->ExpandAble()) {
|
||||
expand_able_ = false;
|
||||
return InferTensorRedistributionOperatorListUnExpand(is_cost_model);
|
||||
}
|
||||
from_layout = ptr->from_in();
|
||||
to_layout = ptr->to_in();
|
||||
}
|
||||
if (!ptr->ExpandAble()) {
|
||||
expand_able_ = false;
|
||||
return InferTensorRedistributionOperatorListUnExpand(is_cost_model);
|
||||
}
|
||||
TensorLayout from_layout = ptr->from_in();
|
||||
TensorLayout to_layout = ptr->to_in();
|
||||
MS_LOG(DEBUG) << "reshape from_layout " << from_layout.ToString();
|
||||
MS_LOG(DEBUG) << "reshape to_layout " << to_layout.ToString();
|
||||
MS_LOG(DEBUG) << "reshape from_origin_ " << from_origin_.ToString();
|
||||
|
|
|
@ -33,6 +33,7 @@ reduce_sum = P.ReduceSum()
|
|||
unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||
transpose = P.Transpose()
|
||||
shape_op = P.Shape()
|
||||
dyn_shape_op = P.DynamicShape()
|
||||
reshape = P.Reshape()
|
||||
size_op = P.Size()
|
||||
invert_permutation = P.InvertPermutation()
|
||||
|
@ -365,7 +366,10 @@ def get_bprop_gather_v2(self):
|
|||
# Example: out_shape:(3,2,3) axis 1 -> (1,0,2)
|
||||
perm_1 = _generate_shape_index(out_shp, ind_shp, axis)
|
||||
values_transpose = transpose(dout, perm_1)
|
||||
params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis])
|
||||
if -1 in shape_op(x):
|
||||
params_grad = unsorted_segment_sum(values_transpose, indices, dyn_shape_op(x)[axis])
|
||||
else:
|
||||
params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis])
|
||||
# Example: out_shape:(3,2,3) axis 2 -> (1,2,0)
|
||||
perm_2 = _generate_inverse_index(x_shp, axis)
|
||||
params_grad = transpose(params_grad, perm_2)
|
||||
|
|
|
@ -0,0 +1,118 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.nn import TrainOneStepCell, Momentum
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
def test_unique_column_split():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.unique = P.Unique().shard(((1,),))
|
||||
self.relu = P.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.embedding_lookp = P.GatherV2().shard(((1, 8), (1,)))
|
||||
self.embedding_table = Parameter(initializer('normal', [2000, 128]),
|
||||
name='embedding_table')
|
||||
self.gatherv2 = P.GatherV2().shard(((1, 8), (1,)))
|
||||
self.reshape = P.Reshape()
|
||||
self.matmul = P.MatMul()
|
||||
self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
|
||||
|
||||
def construct(self, indices):
|
||||
indices_flatten = self.reshape(indices, (-1,))
|
||||
unique_id, unique_idx = self.unique(indices_flatten)
|
||||
unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
|
||||
weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
|
||||
weight = self.reshape(weight_flatten, (32, 64, 128))
|
||||
vx = self.mul(weight, self.mul_weight)
|
||||
return vx
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="auto_parallel")
|
||||
x = Tensor(np.ones([32, 64]), dtype=ms.int32)
|
||||
net = Net()
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, x)
|
||||
|
||||
def test_unique_row_split():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.unique = P.Unique().shard(((1,),))
|
||||
self.relu = P.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.embedding_lookp = P.GatherV2().shard(((8, 1), (1,)))
|
||||
self.embedding_table = Parameter(initializer('normal', [2000, 128]),
|
||||
name='embedding_table')
|
||||
self.gatherv2 = P.GatherV2().shard(((1, 1), (8,)))
|
||||
self.reshape = P.Reshape()
|
||||
self.matmul = P.MatMul()
|
||||
self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
|
||||
|
||||
def construct(self, indices):
|
||||
indices_flatten = self.reshape(indices, (-1,))
|
||||
unique_id, unique_idx = self.unique(indices_flatten)
|
||||
unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
|
||||
weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
|
||||
weight = self.reshape(weight_flatten, (32, 64, 128))
|
||||
vx = self.mul(weight, self.mul_weight)
|
||||
return vx
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="stand_alone")
|
||||
x = Tensor(np.ones([32, 64]), dtype=ms.int32)
|
||||
net = Net()
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, x)
|
Loading…
Reference in New Issue