forked from mindspore-Ecosystem/mindspore
check arg is tensor with vm backend
This commit is contained in:
parent
444d9484d7
commit
0cd57ddc5d
|
@ -615,12 +615,16 @@ void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef
|
|||
py::object arg = args[i];
|
||||
auto ms_context = MsContext::GetInstance();
|
||||
if (ms_context->backend_policy() == kMsConvert && py::isinstance<py::array>(arg)) {
|
||||
MS_LOG(EXCEPTION) << "Args[" << i << "] is numpy array, not tensor";
|
||||
MS_LOG(EXCEPTION) << "The " << i << "th arg is numpy array, not tensor.";
|
||||
}
|
||||
ValuePtr converted = nullptr;
|
||||
bool succ = parse::ConvertData(arg, &converted);
|
||||
if (!succ) {
|
||||
MS_LOG(EXCEPTION) << "Args convert error";
|
||||
MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
|
||||
}
|
||||
if (MsContext::GetInstance()->execution_mode() == 0 && !converted->isa<tensor::Tensor>()) {
|
||||
MS_EXCEPTION(TypeError) << "For 'graph mode', the " << i << "th arg: " << converted->ToString()
|
||||
<< " is not tensor.";
|
||||
}
|
||||
arg_list->push_back(converted);
|
||||
}
|
||||
|
|
|
@ -460,12 +460,12 @@ void ProcessGeArg(const std::map<std::string, ExecutorInfoPtr> &info, const py::
|
|||
ValuePtr converted = nullptr;
|
||||
bool succ = parse::ConvertData(args[i], &converted);
|
||||
if (!succ) {
|
||||
MS_LOG(EXCEPTION) << "Args convert error";
|
||||
MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
|
||||
}
|
||||
if (converted->isa<tensor::Tensor>()) {
|
||||
inputs->push_back(converted->cast<tensor::TensorPtr>());
|
||||
} else {
|
||||
MS_EXCEPTION(TypeError) << "Args " << converted->ToString() << " is not tensor";
|
||||
MS_EXCEPTION(TypeError) << "The " << i << "th arg: " << converted->ToString() << " is not tensor.";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -24,13 +24,15 @@ from mindspore.ops import operations as P
|
|||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
def __init__(self, type0, type1):
|
||||
super(Net, self).__init__()
|
||||
self.Cast = P.Cast()
|
||||
self.type0 = type0
|
||||
self.type1 = type1
|
||||
|
||||
def construct(self, x0, type0, x1, type1):
|
||||
output = (self.Cast(x0, type0),
|
||||
self.Cast(x1, type1))
|
||||
def construct(self, x0, x1):
|
||||
output = (self.Cast(x0, self.type0),
|
||||
self.Cast(x1, self.type1))
|
||||
return output
|
||||
|
||||
|
||||
|
@ -44,8 +46,8 @@ def test_cast():
|
|||
t1 = mstype.float32
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
net = Net()
|
||||
output = net(x0, t0, x1, t1)
|
||||
net = Net(t0, t1)
|
||||
output = net(x0, x1)
|
||||
type0 = output[0].asnumpy().dtype
|
||||
assert type0 == 'float16'
|
||||
type1 = output[1].asnumpy().dtype
|
||||
|
@ -62,8 +64,8 @@ def test_cast1():
|
|||
t1 = mstype.float32
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
net = Net()
|
||||
output = net(x0, t0, x1, t1)
|
||||
net = Net(t0, t1)
|
||||
output = net(x0, x1)
|
||||
type0 = output[0].asnumpy().dtype
|
||||
assert type0 == 'float32'
|
||||
type1 = output[1].asnumpy().dtype
|
||||
|
|
|
@ -25,24 +25,29 @@ context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|||
|
||||
|
||||
class NetCenteredRMSProp(nn.Cell):
|
||||
def __init__(self):
|
||||
def __init__(self, lr, decay, momentum, epsilon):
|
||||
super(NetCenteredRMSProp, self).__init__()
|
||||
self.rms_opt = P.ApplyCenteredRMSProp()
|
||||
self.lr = lr
|
||||
self.decay = decay
|
||||
self.momentum = momentum
|
||||
self.epsilon = epsilon
|
||||
|
||||
def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
|
||||
return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
|
||||
def construct(self, var, g, mg, rms, mom):
|
||||
return self.rms_opt(var, mg, rms, mom, g, self.lr, self.decay, self.momentum, self.epsilon)
|
||||
|
||||
|
||||
class NetRMSProp(nn.Cell):
|
||||
def __init__(self, decay, momentum, epsilon):
|
||||
def __init__(self, lr, decay, momentum, epsilon):
|
||||
super(NetRMSProp, self).__init__()
|
||||
self.lr = lr
|
||||
self.decay = decay
|
||||
self.momentum = momentum
|
||||
self.epsilon = epsilon
|
||||
self.rms_opt = P.ApplyRMSProp()
|
||||
|
||||
def construct(self, var, g, mg, rms, mom, lr):
|
||||
return self.rms_opt(var, rms, mom, lr, g, self.decay, self.momentum, self.epsilon)
|
||||
def construct(self, var, g, mg, rms, mom):
|
||||
return self.rms_opt(var, rms, mom, self.lr, g, self.decay, self.momentum, self.epsilon)
|
||||
|
||||
|
||||
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
||||
|
@ -82,16 +87,14 @@ def test_rmsprop():
|
|||
if centered:
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp()
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
|
||||
moment_ms, learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
|
||||
else:
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
|
||||
moment_ms, learning_rate)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
|
||||
error = np.ones(shape=variable_np.shape) * 10e-6
|
||||
diff = variable_ms.asnumpy() - variable_np
|
||||
|
@ -135,15 +138,13 @@ def test_rmspropcenter():
|
|||
if centered:
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp()
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
else:
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
|
||||
learning_rate)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
||||
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
||||
|
||||
error = np.ones(shape=variable_np.shape) * 10e-6
|
||||
diff = variable_ms.asnumpy() - variable_np
|
||||
|
|
Loading…
Reference in New Issue