!6651 Modify init interface to internal interface

Merge pull request !6651 from lijiaqi/init
This commit is contained in:
mindspore-ci-bot 2020-09-22 09:06:48 +08:00 committed by Gitee
commit 091ee5085e
3 changed files with 4 additions and 37 deletions

View File

@ -267,7 +267,7 @@ class Model:
return dataset_helper, network return dataset_helper, network
def init(self, train_dataset=None, valid_dataset=None): def _init(self, train_dataset=None, valid_dataset=None, sink_size=-1):
""" """
Initialize compute graphs and data graphs with the sink mode. Initialize compute graphs and data graphs with the sink mode.
@ -279,17 +279,7 @@ class Model:
initialized. Default: None. initialized. Default: None.
valid_dataset (Dataset): A evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs valid_dataset (Dataset): A evaluating dataset iterator. If `valid_dataset` is defined, evaluation graphs
will be initialized, and `metrics` in `Model` can not be None. Default: None. will be initialized, and `metrics` in `Model` can not be None. Default: None.
sink_size (int): Control the amount of data in each sink. Default: -1.
Examples:
>>> train_dataset = get_train_dataset()
>>> valid_dataset = get_valid_dataset()
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
>>> model.init(train_dataset, valid_dataset)
>>> model.train(2, train_dataset)
>>> model.eval(valid_dataset)
""" """
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend": if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.') raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
@ -309,7 +299,8 @@ class Model:
is_train=True, is_train=True,
phase='train', phase='train',
dataset=train_dataset, dataset=train_dataset,
dataset_sink_mode=True) dataset_sink_mode=True,
sink_size=sink_size)
self._train_network = train_network self._train_network = train_network
for inputs in train_dataset_helper: for inputs in train_dataset_helper:
self._train_network.compile(*inputs) self._train_network.compile(*inputs)

View File

@ -201,11 +201,6 @@ def train_process(q, device_id, epoch_size, device_num, enable_hccl):
metrics={'acc': DistAccuracy(batch_size=config.eval_batch_size, device_num=device_num)}, metrics={'acc': DistAccuracy(batch_size=config.eval_batch_size, device_num=device_num)},
eval_network=dist_eval_network) eval_network=dist_eval_network)
# model init
print("init_start", device_id)
model.init(dataset, eval_dataset)
print("init_stop", device_id)
# callbacks # callbacks
loss_cb = LossGet(1, step_size) loss_cb = LossGet(1, step_size)

View File

@ -221,25 +221,6 @@ def test_model_build_abnormal_string():
assert err assert err
def test_model_init():
""" test_model_init_error """
train_dataset = get_dataset()
eval_dataset = get_dataset()
with pytest.raises(RuntimeError):
context.set_context(mode=context.PYNATIVE_MODE)
get_model().init(train_dataset)
context.set_context(mode=context.GRAPH_MODE)
get_model().init(train_dataset)
get_model(metrics={'acc'}).init(eval_dataset)
with pytest.raises(RuntimeError):
get_model().init(train_dataset, eval_dataset)
with pytest.raises(ValueError):
get_model().init()
def test_init_model_error(): def test_init_model_error():
""" test_init_model_error """ """ test_init_model_error """
net = nn.ReLU() net = nn.ReLU()