diff --git a/mindspore/nn/layer/normalization.py b/mindspore/nn/layer/normalization.py index fdfa25e1838..d43c1c8ab40 100644 --- a/mindspore/nn/layer/normalization.py +++ b/mindspore/nn/layer/normalization.py @@ -249,7 +249,7 @@ class LayerNorm(Cell): 'he_uniform', etc. Default: 'zeros'. Inputs: - - **input_x** (Tensor) - The shape of 'input_x' is input_shape = `(x_1, x_2, ..., x_R)`, + - **input_x** (Tensor) - The shape of 'input_x' is input_shape = :math:`(x_1, x_2, ..., x_R)`, and `input_shape[begin_norm_axis:]` is equal to `normalized_shape`. Outputs: diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 8585f873e98..f6d563321c4 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -1790,7 +1790,7 @@ class ScatterNd(PrimitiveWithInfer): class ResizeNearestNeighbor(PrimitiveWithInfer): - """ + r""" Resize the input tensor by using nearest neighbor algorithm. Resize input tensor to given size by using nearest neighbor algorithm. The nearest @@ -1806,7 +1806,7 @@ class ResizeNearestNeighbor(PrimitiveWithInfer): - **input_x** (Tensor) - The input tensor. The shape of the tensor is :math:`(N, C, H, W)`. Outputs: - Tensor, the shape of the output tensor is :math:`(N, NEW_C, NEW_H, W)`. + Tensor, the shape of the output tensor is :math:`(N, NEW\_C, NEW\_H, W)`. Examples: >>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)