forked from mindspore-Ecosystem/mindspore
quant evaluation export bugfix
This commit is contained in:
parent
b7183ded66
commit
07fc1eb455
|
@ -1364,10 +1364,6 @@ class QuantBlock(Cell):
|
|||
self.has_bias = bias is not None
|
||||
self.activation = activation
|
||||
self.has_act = activation is not None
|
||||
if isinstance(activation, ReLU):
|
||||
self.activation = None
|
||||
self.has_act = False
|
||||
self.dequant.add_prim_attr("relu_flag", True)
|
||||
self.bias_add = P.BiasAdd()
|
||||
|
||||
def construct(self, x):
|
||||
|
@ -1376,9 +1372,10 @@ class QuantBlock(Cell):
|
|||
x = self.core_op(x, self.weight, self.bias)
|
||||
else:
|
||||
x = self.core_op(x, self.weight)
|
||||
x = self.dequant(x, self.dequant_scale)
|
||||
x = F.cast(x, mstype.float32)
|
||||
if self.has_act:
|
||||
x = self.activation(x)
|
||||
x = self.dequant(x, self.dequant_scale)
|
||||
return x
|
||||
|
||||
def extend_repr(self):
|
||||
|
|
|
@ -368,12 +368,12 @@ class ExportToQuantInferNetwork:
|
|||
|
||||
scale_w, zp_w, _, _ = \
|
||||
quant_utils.scale_zp_max_min_from_fake_quant_cell(cell_core.fake_quant_weight, np_type)
|
||||
scale_a_out, _, param_dict["output_maxq"], param_dict["output_minq"] = \
|
||||
_, _, param_dict["output_maxq"], param_dict["output_minq"] = \
|
||||
quant_utils.scale_zp_max_min_from_fake_quant_cell(fake_quant_a_out, np_type)
|
||||
|
||||
info = self.quant_info_table.get(w_minq_name, None)
|
||||
if info:
|
||||
fack_quant_a_in_op, minq_name = info
|
||||
fake_quant_a_in_op, minq_name = info
|
||||
if minq_name == 'input':
|
||||
scale_a_in, zp_a_in = self.input_scale, self.input_zero_point
|
||||
else:
|
||||
|
@ -381,17 +381,17 @@ class ExportToQuantInferNetwork:
|
|||
minq = self.all_parameters[minq_name]
|
||||
if self.is_mindir:
|
||||
scale_a_in, zp_a_in, param_dict["input_maxq"], param_dict["input_minq"] = \
|
||||
quant_utils.scale_zp_max_min_from_data(fack_quant_a_in_op, minq, maxq, np_type)
|
||||
quant_utils.scale_zp_max_min_from_data(fake_quant_a_in_op, minq, maxq, np_type)
|
||||
else:
|
||||
scale_a_in, zp_a_in = quant_utils.scale_zp_from_data(fack_quant_a_in_op, minq, maxq, np_type)
|
||||
scale_a_in, zp_a_in = quant_utils.scale_zp_from_data(fake_quant_a_in_op, minq, maxq, np_type)
|
||||
else:
|
||||
logger.warning(f"Do not find `fake_quant` from input with `fake_quant.minq` {w_minq_name}")
|
||||
logger.warning(f"Can not find `fake_quant` from input with `fake_quant.minq` {w_minq_name}")
|
||||
return None
|
||||
|
||||
# Build the `Quant` `Dequant` op.
|
||||
# Quant only support perlayer version. Need check here.
|
||||
quant_op = inner.Quant(1 / float(scale_a_in), float(zp_a_in))
|
||||
scale_deq = scale_a_out * scale_w
|
||||
scale_deq = scale_a_in * scale_w
|
||||
dequant_op = inner.Dequant()
|
||||
|
||||
if isinstance(activation, _AddFakeQuantAfterSubCell):
|
||||
|
@ -414,7 +414,9 @@ class ExportToQuantInferNetwork:
|
|||
weight_b = weight
|
||||
bias_b = bias
|
||||
# apply the quant
|
||||
weight = quant_utils.weight2int(weight, scale_w, zp_w)
|
||||
fake_quant_weight_op = cell_core.fake_quant_weight.fake_quant_infer
|
||||
weight = quant_utils.weight2int(weight, scale_w, zp_w, np_type, fake_quant_weight_op.num_bits,
|
||||
fake_quant_weight_op.narrow_range)
|
||||
if bias is not None:
|
||||
bias = Tensor(bias / scale_a_in / scale_w, mstype.int32)
|
||||
|
||||
|
|
|
@ -29,7 +29,7 @@ def cal_quantization_params(input_min,
|
|||
Args:
|
||||
input_min (numpy.ndarray): The dimension of channel or 1.
|
||||
input_max (numpy.ndarray): The dimension of channel or 1.
|
||||
data_type (numpy type) : Can ben numpy int8, numpy uint8.
|
||||
data_type (numpy type) : Can be numpy int8, numpy uint8.
|
||||
num_bits (int): Quantization number bit, support 4 and 8bit. Default: 8.
|
||||
symmetric (bool): Whether the quantization algorithm is symmetric or not. Default: False.
|
||||
narrow_range (bool): Whether the quantization algorithm uses narrow range or not. Default: False.
|
||||
|
@ -52,10 +52,12 @@ def cal_quantization_params(input_min,
|
|||
|
||||
if data_type == np.int8:
|
||||
quant_min = 0 - 2 ** (num_bits - 1)
|
||||
quant_max = 2 ** (num_bits - 1)
|
||||
else:
|
||||
quant_max = 2 ** (num_bits - 1) - 1
|
||||
elif data_type == np.uint8:
|
||||
quant_min = 0
|
||||
quant_max = 2 ** num_bits - 1
|
||||
else:
|
||||
raise ValueError("Unsupported datatype({})".format(data_type))
|
||||
if narrow_range:
|
||||
quant_min = quant_min + 1
|
||||
|
||||
|
@ -69,22 +71,13 @@ def cal_quantization_params(input_min,
|
|||
if symmetric:
|
||||
zp = np.zeros(input_min.shape)
|
||||
else:
|
||||
zp_from_min = quant_min - input_min / scale
|
||||
zp_from_max = quant_max - input_max / scale
|
||||
zp_from_min_error = np.abs(quant_min) + np.abs(input_min / scale)
|
||||
zp_from_max_error = np.abs(quant_max) + np.abs(input_max / scale)
|
||||
zp_double = zp_from_min if zp_from_min_error < zp_from_max_error else zp_from_max
|
||||
if zp_double < quant_min:
|
||||
zp = quant_min
|
||||
elif zp_double > quant_max:
|
||||
zp = quant_max
|
||||
else:
|
||||
zp = np.floor(zp_double + 0.5)
|
||||
zp_double = quant_min - input_min / scale
|
||||
zp = np.floor(zp_double + 0.5)
|
||||
|
||||
return scale, zp
|
||||
|
||||
|
||||
def weight2int(data, scale, zero_point):
|
||||
def weight2int(data, scale, zero_point, data_type, num_bits=8, narrow_range=False):
|
||||
r"""
|
||||
Calculate int8/uint8 weight from fp32. the formula is defined as:
|
||||
|
||||
|
@ -95,6 +88,9 @@ def weight2int(data, scale, zero_point):
|
|||
data (numpy.ndarray): The dimension of channel or 1. Should be NCHW.
|
||||
scale (numpy.ndarray): The dimension of channel or 1.
|
||||
zero_point (numpy.ndarray): The dimension of channel or 1.
|
||||
data_type (numpy type) : Can be numpy int8, numpy uint8.
|
||||
num_bits (int): Quantization number bit, support 4 and 8bit. Default: 8.
|
||||
narrow_range (bool): Whether the quantization algorithm uses narrow range or not. Default: False.
|
||||
|
||||
Returns:
|
||||
weight (numpy.ndarray): The dimension of channel or 1.
|
||||
|
@ -118,7 +114,21 @@ def weight2int(data, scale, zero_point):
|
|||
else:
|
||||
raise ValueError("Unsupported weight shape({})".format(data.shape))
|
||||
|
||||
return np.round((data / scale) + zero_point)
|
||||
if data_type == np.int8:
|
||||
quant_min = 0 - 2 ** (num_bits - 1)
|
||||
quant_max = 2 ** (num_bits - 1) - 1
|
||||
elif data_type == np.uint8:
|
||||
quant_min = 0
|
||||
quant_max = 2 ** num_bits - 1
|
||||
else:
|
||||
raise ValueError("Unsupported weight datatype({})".format(data_type))
|
||||
if narrow_range:
|
||||
quant_min = quant_min + 1
|
||||
|
||||
weight_int = np.round((data / scale) + zero_point)
|
||||
weight_int[weight_int > quant_max] = quant_max
|
||||
weight_int[weight_int < quant_min] = quant_min
|
||||
return weight_int
|
||||
|
||||
def scale_zp_max_min_from_fake_quant_cell(cell, data_type):
|
||||
"""Get calculate quantization params for scale, zero point, max and min from `FakeQuantWithMinMax`."""
|
||||
|
@ -145,7 +155,7 @@ def scale_zp_from_data(op, minq, maxq, data_type):
|
|||
`mindspore.ops.operation.FakeQuantPerChannel`
|
||||
minq (Parameter): Parameter `minq` of `mindspore.nn.layer.FakeQuantWithMinMax`
|
||||
maxq (Parameter): Parameter `maxq` of `mindspore.nn.layer.FakeQuantWithMinMax`
|
||||
data_type (numpy type): Can ben `numpy.int8` or `numpy.uint8`.
|
||||
data_type (numpy type): Can be `numpy.int8` or `numpy.uint8`.
|
||||
|
||||
Returns:
|
||||
scale (numpy.ndarray): quantization param.
|
||||
|
|
|
@ -48,7 +48,7 @@ if __name__ == "__main__":
|
|||
network = LeNet5Fusion(cfg.num_classes)
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000,
|
||||
per_channel=[True, False])
|
||||
per_channel=[True, False], symmetric=[True, False])
|
||||
|
||||
# define loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
|
|
|
@ -44,7 +44,8 @@ if __name__ == "__main__":
|
|||
# define fusion network
|
||||
network = LeNet5Fusion(cfg.num_classes)
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000,
|
||||
per_channel=[True, False], symmetric=[True, False])
|
||||
# load quantization aware network checkpoint
|
||||
param_dict = load_checkpoint(args.ckpt_path)
|
||||
load_param_into_net(network, param_dict)
|
||||
|
|
|
@ -60,7 +60,7 @@ if __name__ == "__main__":
|
|||
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False],
|
||||
symmetric=[False, False])
|
||||
symmetric=[True, False])
|
||||
|
||||
# define network loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
|
|
Loading…
Reference in New Issue