diff --git a/mindspore/ccsrc/parallel/step_auto_parallel.cc b/mindspore/ccsrc/parallel/step_auto_parallel.cc index 7a895a94585..50e6a1e84e5 100644 --- a/mindspore/ccsrc/parallel/step_auto_parallel.cc +++ b/mindspore/ccsrc/parallel/step_auto_parallel.cc @@ -350,6 +350,8 @@ bool IsAutoParallelCareNode(const CNodePtr &cnode) { } OperatorInfoPtr CreateTheOperatorInfo(const PrimitivePtr &prim, const CNodePtr &cnode) { + MS_EXCEPTION_IF_NULL(prim); + MS_EXCEPTION_IF_NULL(cnode); auto attrs = prim->attrs(); std::vector shape_list = ExtractShape(cnode); if (shape_list.empty()) { diff --git a/mindspore/ccsrc/parallel/step_parallel.cc b/mindspore/ccsrc/parallel/step_parallel.cc index af5eb0159f0..9a08ead584a 100644 --- a/mindspore/ccsrc/parallel/step_parallel.cc +++ b/mindspore/ccsrc/parallel/step_parallel.cc @@ -374,7 +374,6 @@ bool IsParallelCareNode(const CNodePtr& cnode) { if (prim == nullptr) { return false; } - auto attrs = prim->attrs(); if (IsInBlackList(prim)) { MS_LOG(INFO) << "Parallel don't care node: " << prim->name(); return false; @@ -1971,11 +1970,7 @@ CNodePtr FindLossCNode(const FuncGraphPtr& func_graph) { MS_EXCEPTION_IF_NULL(current_value); PrimitivePtr current_prim = current_value->value()->cast(); MS_EXCEPTION_IF_NULL(current_prim); -<<<<<<< HEAD -<<<<<<< HEAD -======= ->>>>>>> fix_cast_bug // return -> cast if (current_prim->name() == CAST && pre_cnode->operator_info() == nullptr) { pre_cnode = pre_cnode->input(1)->cast(); @@ -1983,8 +1978,7 @@ CNodePtr FindLossCNode(const FuncGraphPtr& func_graph) { current_prim = GetValueNode(pre_cnode->input(0)); } -======= ->>>>>>> 回退 'Pull Request !17 : [AutoParallel]Fix bug in the case of two cast' + // notice: the GetNext op has not input if (INVALID_LOSS_OPS.find(current_prim->name()) != INVALID_LOSS_OPS.end()) { MS_LOG(INFO) << "The loss is: " << current_prim->name(); diff --git a/tests/ut/python/parallel/test_element_wise_function.py b/tests/ut/python/parallel/test_element_wise_function.py index 0c65593d6ac..2eb3a22ed2a 100644 --- a/tests/ut/python/parallel/test_element_wise_function.py +++ b/tests/ut/python/parallel/test_element_wise_function.py @@ -268,3 +268,32 @@ def test_cast_before_mirror3(): y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) _executor.compile(net, x, y, b) + + +def test_mul_two_cast(): + class Net(nn.Cell): + def __init__(self, strategy1, strategy2, strategy3): + super().__init__() + self.mul = P.Mul().set_strategy(strategy1) + self.mul2 = P.Mul().set_strategy(strategy2) + self.cast = P.Cast().set_strategy(strategy3) + self.cast2 = P.Cast().set_strategy(strategy3) + + def construct(self, x, y, b): + out = self.mul(x, y) + out = self.mul2(out, b) + out = self.cast(out, ms.int32) + out = self.cast2(out, ms.bool_) + return out + + context.set_auto_parallel_context(device_num=8, global_rank=0) + strategy1 = ((2, 2), (2, 2)) + strategy2 = ((8, 1), (8, 1)) + strategy3 = ((8, 1), ) + net = GradWrap(Net(strategy1, strategy2, strategy3)) + context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") + + x = Tensor(np.ones([128, 32]), dtype=ms.float32) + y = Tensor(np.ones([128, 32]), dtype=ms.float32) + b = Tensor(np.ones([128, 32]), dtype=ms.float32) + _executor.compile(net, x, y, b)